6 research outputs found

    Crossover from Regular to Chaotic Behavior in the Conductance of Periodic Quantum Chains

    Get PDF
    The conductance of a waveguide containing finite number of periodically placed identical point-like impurities is investigated. It has been calculated as a function of both the impurity strength and the number of impurities using the Landauer-B\"uttiker formula. In the case of few impurities the conductance is proportional to the number of the open channels NN of the empty waveguide and shows a regular staircase like behavior with step heights ≈2e2/h\approx 2e^2/h. For large number of impurities the influence of the band structure of the infinite periodic chain can be observed and the conductance is approximately the number of energy bands (smaller than NN) times the universal constant 2e2/h2e^2/h. This lower value is reached exponentially with increasing number of impurities. As the strength of the impurity is increased the system passes from integrable to quantum-chaotic. The conductance, in units of 2e2/h2e^2/h, changes from NN corresponding to the empty waveguide to ∼N/2\sim N/2 corresponding to chaotic or disordered system. It turnes out, that the conductance can be expressed as (1−c/2)N(1-c/2)N where the parameter 0<c<10<c<1 measures the chaoticity of the system.Comment: 5 pages Revte

    Diffraction in the semiclassical description of mesoscopic devices

    Get PDF
    In pseudo integrable systems diffractive scattering caused by wedges and impurities can be described within the framework of Geometric Theory of Diffraction (GDT) in a way similar to the one used in the Periodic Orbit Theory of Diffraction (POTD). We derive formulas expressing the reflection and transition matrix elements for one and many diffractive points and apply it for impurity and wedge diffraction. Diffraction can cause backscattering in situations, where usual semiclassical backscattering is absent causing an erodation of ideal conductance steps. The length of diffractive periodic orbits and diffractive loops can be detected in the power spectrum of the reflection matrix elements. The tail of the power spectrum shows ∼1/l1/2\sim 1/l^{1/2} decay due to impurity scattering and ∼1/l3/2\sim 1/l^{3/2} decay due to wedge scattering. We think this is a universal sign of the presence of diffractive scattering in pseudo integrable waveguides.Comment: 18 pages, Latex , ep
    corecore