31 research outputs found

    Spin-strain coupling in NiCl2-4SC(NH2)2

    Get PDF
    We report results of ultrasonic investigations of the quantum S = 1 spin-chain magnet NiCl2-4SC(NH2)2, also known as DTN, in magnetic fields up to 18 T and temperatures down to 0.3 K. A field H along the [001] direction induces a transition into an antiferromagnetic phase with T(N)max ≈ 1.2 K. Accordingly, at T = 0 there are two quantum critical points at ~2.1 T and at ~12.6 T. The acoustic c33 mode, propagating along the spin chains, shows a pronounced softening close to the phase transition, accompanied by energy dissipation of the sound wave. The H-T phase diagram obtained from our measurements is compared with results from other experimental investigations and the low-temperature acoustic anomalies are traced up to T > T(N). We also report frequency-dependent effects, which open the possibility to investigate the spin fluctuations in the critical regions. Our observations show an important role of the spin-phonon coupling in DTN

    Magnetoacoustics of the Low-Dimensional Quantum Antiferromagnet Cs2CuCl4 with Spin Frustration

    Get PDF
    We report on results of sound-velocity and sound-attenuation measurements in the triangular-lattice spin-1/2 antiferromagnet Cs₂CuCl₄ (T<sub>N</sub> = 0.6 K), in external magnetic fields up to 14 T, applied along the <em>b</em> axis, and at temperatures down to 300 mK. The results are analyzed with a quasi-two-dimensional hard-core boson theory based on exchange-striction coupling. There is a good qualitative agreement between theoretical and experimental results.Citation: Sytcheva, A. et al. (2010). 'Magnetoacoustics of the low-dimensional quantum antiferromagnet Cs₂CuCl₄', Journal of Low Temperature Physics, 159(1-2), 109-113. [Available at http://www.springer.com/materials/journal/10909]. © The Authors 2010. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any non-commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.

    Character of magnetic excitations in a quasi-one-dimensional antiferromagnet near the quantum critical points: Impact on magneto-acoustic properties

    Full text link
    We report results of magneto-acoustic studies in the quantum spin-chain magnet NiCl2_2-4SC(NH2_2)2_2 (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c33c_{33} mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T>TNT > T_N, where the thermodynamic properties are determined by fermionic magnetic excitations, the "hallmark" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a 3D bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.Comment: 5 pages, 4 figures. Accepted for publication by Phys. Rev

    Acoustic Faraday effect in Tb3_3Ga5_5O12_{12}

    Full text link
    The transverse acoustic wave propagating along the [100] axis of the cubic Tb3_3Ga5_5O12_{12} (acoustic c44c_{44} mode) is doubly degenerate. A magnetic field applied in the direction of propagation lifts this degeneracy and leads to the rotation of the polarization vector - the magneto-acoustic Faraday rotation. Here, we report on the observation and analysis of the magneto-acoustic Faraday-effect in Tb3_3Ga5_5O12_{12} in static and pulsed magnetic fields. We present also a theoretical model based on magnetoelastic coupling of 4ff electrons to both, acoustic and optical phonons and an effective coupling between them. This model explains the observed linear frequency dependence of the Faraday rotation angle

    Interplay of Spin and Lattice Degrees of Freedom in the Frustrated Antiferromagnet CdCr_2O_4: High-field and Temperature Induced Anomalies of the Elastic Constants

    Full text link
    Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr_2O_4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the [111] direction with theory based on an exchange-striction mechanism leads to an estimate of the strength of the magneto-elastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction discussed and we compare the spin-phonon coupling in CdCr_2O_4 in both the ordered and disordered states.Comment: 12 pages, 8 figures; Appendix added,To appear in Phys Rev.

    Monopole and quadrupole polarization effects on the alpha-particle description of 8^{8}Be

    Full text link
    We investigate the effect of monopole and quadrupole modes on the elastic alpha-alpha resonance structure of 8^{8}Be. To this end we make a fully microscopic coupled channels calculation with three coupled channels, using the Algebraic Model. The continuum spectrum and wave functions are analyzed in terms of the individual channels to understand the nature of the resonances. It is shown that both monopole and quadrupole modes have a non-negligible effect on the resonances in the alpha-alpha continuum.Comment: 20 pages, 4 figures. submitted to Phys.Rev.
    corecore