6 research outputs found

    The catastrophic hpv/hiv dual viral oncogenomics in concert with dysregulated alternative splicing in cervical cancer

    No full text
    Cervical cancer is a public health problem and has devastating effects in low-to-middle-income countries (LTMICs) such as the sub-Saharan African (SSA) countries. Infection by the human papillomavirus (HPV) is the main cause of cervical cancer. HIV positive women have higher HPV prevalence and cervical cancer incidence than their HIV negative counterparts do. Concurrent HPV/HIV infection is catastrophic, particularly to African women due to the high prevalence of HIV infections. Although various studies show a relationship between HPV, HIV and cervical cancer, there is still a gap in the knowledge concerning the precise nature of this tripartite association. Firstly, most studies show the relationship between HPV and cervical cancer at genomic and epigenetic levels, while the transcriptomic landscape of this relationship remains to be elucidated. Even though many studies have shown HPV/HIV dual viral pathogenesis, the dual molecular oncoviral effects on the development of cervical cancer remains largely uncertain. Furthermore, the effect of highly active antiretroviral therapy (HAART) on the cellular splicing machinery is unclear. Emerging evidence indicates the vital role played by host splicing events in both HPV and HIV infection in the development and progression to cervical cancer. Therefore, decoding the transcriptome landscape of this tripartite relationship holds promising therapeutic potential. This review will focus on the link between cellular splicing machinery, HPV, HIV infection and the aberrant alternative splicing events that take place in HIV/HPV-associated cervical cancer. Finally, we will investigate how these aberrant splicing events can be targeted for the development of new therapeutic strategies against HPV/HIV-associated cervical cancer. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Quantitative assessment of cd200 and cd200r expression in lung cancer

    No full text
    CD200/CD200R is an immune checkpoint with broad expression patterns and a potential target for immune therapy. In this study, we assess both CD200 and CD200R expression in solid tumors, with a focus on lung cancer, and evaluate their association with clinicopathologic characteristics, mutation status, outcome, and programmed death-ligand 1 (PD-L1) expression. We used multiplexed quantitative immunofluorescence (QIF) to measure the expression of CD200 and CD200R in a total of 455 patients from three lung cancer cohorts. Using carefully validated anti-bodies, we performed target measurement with tyramide-based QIF panels and analyzed the data using the PM2000 microscope and AQUA software. CD200 tumor positivity was found in 29.7% of non-small cell lung cancer (NSCLC) patients and 33.3% of lung large cell neuroendocrine carcinoma (LCNEC) patients. CD200 demonstrated notable intratumoral heterogeneity. CD200R was expressed in immune cells in 25% of NSCLC and 41.3% of LCNEC patients. While CD200R is predominantly expressed in immune cells, rare tumor cell staining was seen in a highly heterogeneous pattern. CD200R expression in the stromal compartment was significantly higher in patients with squamous differentiation (p < 0.0001). Neither CD200 nor CD200R were associated with other clinicopathologic characteristics or mutation status. Both biomarkers were not prognostic for disease-free or overall survival in NSCLC. CD200 showed moderate correlation with PD-L1. CD200/CD200R pathway is frequently expressed in lung cancer patients. Differential expression patterns of CD200 and CD200R with PD-L1 suggest a potential role for targeting this pathway alone in patients with NSCLC. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy: Implications for Scheduling of Anti-Angiogenic Drugs

    Get PDF
    SummaryCurrent strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cancer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetaxel ([11C]docetaxel). In NSCLC, bevacizumab reduced both perfusion and net influx rate of [11C]docetaxel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocate further studies to optimize scheduling of anti-angiogenic drugs

    Analysing Greek-Turkish disaster-related cooperation: A disaster diplomacy perspective

    No full text
    corecore