39 research outputs found

    Effect of antiandrogen flutamide on measures of hepatic regeneration in rats

    Get PDF
    Male rat liver undergoes a process of demasculinization during hepatic regeneration following partial hepatectomy. The possibility that antiandrogens might potentiate this demasculinization process and in so doing augment the hepatic regenerative response was investigated. Adult male Wistar rats were treated with the antiandrogen flutamide (2 mg/rat/day or 5 mg/rat/day subcutaneously) or vehicle for three days prior to and daily after a 70% partial hepatectomy. At various times after hepatectomy, the liver remnants were removed and weighed. Rates of DNA and polyamine synthesis were assessed by measuring thymidine kinase and ornithine decarboxylase activities, respectively. Hepatic estrogen receptor status and the activity of alcohol dehydrogenase, an androgen-sensitive protein, were measured. Prior to surgery, the administration of 5 mg/day flutamide reduced the hepatic cytosolic androgen receptor activity by 98% and hepatic cytosolic estrogen receptor content by 92% compared to that present in vehicle-treated controls. After hepatectomy, however, all differences in sex hormone receptor activity between the treatment groups were abolished. The rate of liver growth after partial hepatectomy in the three groups was identical. Moreover, hepatectomy-induced increases in ornithine decarboxylase activity and thymidine kinase activity were comparable. These data demonstrate that, although flutamide administration initially alters the sex hormone receptor status of the liver, these affects have no effect on the hepatic regenerative response following a partial hepatectomy. © 1989 Plenum Publishing Corporation

    Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    Get PDF
    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority

    Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    Get PDF
    BACKGROUND: Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. METHODOLOGY/PRINCIPAL FINDINGS: Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. CONCLUSIONS/SIGNIFICANCE: Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable

    Retention of a transgenerational marker ((137)Barium) in tissues of adult female anemonefish and assessment of physiological stress

    No full text
    Recently it was shown that female fish injected with enriched stable isotopes maternally transmit a chemical signature to larval otoliths. Validation of this larval marking technique requires laboratory experiments to determine appropriate injection concentrations and to assess any negative effects on larval and adult condition. This study investigated the temporal profile of (137)barium assimilation and retention in tissues of adult female anemonefish Amphiprion melanopus (Pomacentridae) following intraperitoneal injection with either 2 or 4 mu g Ba-137 g(-1) body mass. Mean barium isotope ratios (Ba-138:Ba-137) in the two groups of treated fish were not significantly different from each other, but were significantly different from those in the control group up to 56 days post-injection. This pattern of Ba-137 retention was consistent across gonad, muscle, liver and bone tissues. Mean plasma cortisol concentration (an indicator of non-specific physiological stress) was not significantly different among groups and was considered to be representative of unstressed fish. Together, these results indicate that (1) A. melanopus suffer minimal physiological stress and cope well after treatment with Ba-137, (2) Ba-137 is retained in female A. melanopus for a prolonged period (at least 56 days), such that multiple clutches of offspring are likely to be marked with an isotopic signature, and (3) a lower dosage of 2 mu g Ba-137 g(-1) appears sufficient for transgenerational marking. It is concluded that Ba-137 is suitable for use as a transgenerational marker and is a powerful tool to resolve long-standing enigmas such as larval dispersal distances and the fishery benefits of marine reserves

    Patterns of distribution and movement of fishes, Ophthalmolepis lineolatus and Hypoplectrodes maccullochi, on temperate rocky reefs of south eastern Australia

    No full text
    Current ecological models predict that reef fish assemblages will be strongly influenced by habitat type. Here we test hypotheses about habitat types and abundance patterns of temperate reef fishes from broad spatial scales (100 s of km) to small spatial scales of metres to tens of metres. Habitat preferences are also described over long periods of time (22 years) for two abundant taxa. Patterns of distribution and abundance varied over ∼ eight degrees of latitude (29.9–37.5°S) along the coast of New South Wales, Australia. Ophthalmolepis lineolatus (Labridae) preferred kelp and Barrens habitats and juveniles were most abundant in habitats rich in algae. This species also increased in abundance from North to South. In contrast, Hypoplectrodes maccullochi (Serranidae) were usually only found in the Barrens habitat and great variation was found among locations. Both taxa were most abundant on urchin grazed deep reefs (over 10 m deep). Habitat preferences of O. lineolatus and H. maccullochi appeared resistant to major environmental perturbations that included large El Niño events in 1991, 1998 and 2002. Home ranges of O. lineolatus varied from 52 m2 to 1,660 m2 and often overlapped; fish of all sizes were most abundant in algal dominated habitat. Limited movements and small home ranges (2.1–11.6 m2) combined with a strong affiliation for shelter indicated that most H. maccullochi are strongly site-attached. Habitat type is important to these taxonomically different fishes, but to varying degrees where H. maccullochi was more of a habitat specialist than O. lineolatus and would be more vulnerable to perturbations that alter Barrens. Changes in reef habitats will have a great influence on fish assemblages and this should also be considered in coastal planning (e.g. for Marine Protected Areas, MPAs) and the assessments of resistance and resilience of fishes to climate change
    corecore