46 research outputs found

    Structural correlates of impaired working memory in hippocampal sclerosis

    Get PDF
    PURPOSE: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. METHODS: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. KEY FINDINGS: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. SIGNIFICANCE: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS

    Optic radiation tractography and vision in anterior temporal lobe resection.

    Get PDF
    Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy but may result in a contralateral superior visual field deficit (VFD) that precludes driving in the seizure-free patient. Diffusion tensor imaging (DTI) tractography can delineate the optic radiation preoperatively and stratify risk. It would be advantageous to incorporate display of tracts into interventional magnetic resonance imaging (MRI) to guide surgery

    Progressive white matter changes following anterior temporal lobe resection for epilepsy.

    Get PDF
    Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy (TLE). Widespread abnormalities in diffusion parameters involving the ipsilateral temporal lobe white matter and extending into extratemporal white matter have been shown in cross-sectional studies in TLE. However longitudinal changes following surgery have been less well addressed. We systematically assess diffusion changes in white matter in patients with TLE in comparison to controls before surgery and look at the longitudinal changes following ATLR at two timepoints (3-4 months, 12 months) using a whole brain approach. We find predominantly unilateral baseline changes in temporal and extratemporal structures compatible with altered myelination (reduced fractional anisotropy, increased mean and radial diffusivity). Following surgery, these changes progress in efferent tracts from the resected temporal lobe compatible with Wallerian degeneration. However more superiorly in the corona radiata, internal and external capsules and nearby tracts, changes compatible with plasticity are observed (increased fractional anisotropy and axial diffusivity, reduced radial diffusivity). There is little progression between 3-4 months and 12 months following surgery in patients with left TLE, but the changes become more widespread in patients with right TLE suggesting that plasticity occurs more slowly in this population. The neuropsychological correlates of such plasticity should be explored further

    Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study

    Get PDF
    Anterior temporal lobe resection controls seizures in 50-60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy

    Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy

    Get PDF
    Malformations of cortical development (MCD), particularly focal cortical dysplasia (FCD), are a common cause of refractory epilepsy but are often invisible on structural imaging. NODDI (neurite orientation dispersion and density imaging) is an advanced diffusion imaging technique that provides additional information on tissue microstructure, including intracellular volume fraction (ICVF), a marker of neurite density. We applied this technique in 5 patients with suspected dysplasia to show that the additional parameters are compatible with the underlying disrupted tissue microstructure and could assist in the identification of the affected area. The consistent finding was reduced ICVF in the area of dysplasia. In one patient, an area of reduced ICVF and increased fibre dispersion was identified that was not originally seen on the structural imaging. The focal reduction in ICVF on imaging is compatible with previous iontophoretic data in surgical specimens, was more conspicuous than on other clinical or diffusion images (supported by an increased contrast-to-noise ratio) and more localised than on previous DTI studies. NODDI may therefore assist the clinical identification and localisation of FCD in patients with epilepsy. Future studies will assess this technique in a larger cohort including MRI negative patients

    Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study.

    Get PDF
    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50-80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex

    Structural changes in the temporal lobe and piriform cortex in frontal lobe epilepsy

    Get PDF
    Background: Neuronal networks involved in seizure generation, maintenance and spread of epileptic activity comprise cortico-subcortical circuits. Although epileptic foci vary in location across focal epilepsy syndromes, there is evidence for common structures in the epileptogenic networks. We recently reported evidence from functional neuroimaging for a unique area in the piriform cortex, common to focal epilepsies in humans, which might play a role in modulating seizure activity.In this study, we aimed to identify common areas of structural abnormalities in patients with frontal lobe epilepsy (FLE). Methods: T1-weighted MRI scans of 43 FLE patients and 25 healthy controls were analysed using voxel based morphometry. Differences in regional grey matter volume were examined across the whole brain, and correlated with age at epilepsy onset, duration and frequency of seizures. Results: We detected areas of increased grey matter volume in the piriform cortex, amygdala and parahippocampal gyrus bilaterally, as well as left mid temporal gyrus of patients relative to controls, which did not correlate with any of the clinical variables tested. No common areas of atrophy were detected across the FLE group. Conclusions: Structural abnormalities within the piriform cortex and adjacent structures of patients with FLE provide further evidence for the involvement of this area in the epileptogenic network of focal epilepsies. Lack of correlation with duration or age of onset of epilepsy suggests that this area of abnormality is not a consequence of seizure activity. © 2014 The Authors

    Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study.

    Get PDF
    Anterior temporal lobe resection (ATLR) controls seizures in up to 70% of patients with intractable temporal lobe epilepsy (TLE) but, in the language dominant hemisphere, may impair language function, particularly naming. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated reorganization of language in left-hemisphere-dominant patients before and after ATLR; whether preoperative functional magnetic resonance imaging (fMRI) predicts postoperative naming decline; and efficiency of postoperative language networks
    corecore