39 research outputs found

    Video and Photometric Observations of a Sprite in Coincidence with a Meteor-triggered Jet Event

    Get PDF
    Video and photometric observations of a meteor-triggered “jet” event in association with the occurrence of a sprite were collected during the SPRITES \u2798 campaign. The event raises interest in the question of possible meteoric triggering of upper atmospheric transients as originally suggested by Muller [1995]. The event consisted of three stages: (1) the observation of a moderately bright meteor, (2) the development of a sprite in the immediate vicinity of the meteor as the meteor reached no lower than ∌70 km altitude, and (3) a slower-forming jet of luminosity that appeared during the late stages of the sprite and propagated back up the ionization trail of the meteor. The event is analyzed in terms of its geometry, its relevance to the meteor, and the implications to existing theories for sprite formation

    Relativistic electron beams above thunderclouds

    Get PDF
    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10<sup>−3</sup> Am<sup>−2</sup> associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit

    Conformally Flat Smoothed Particle Hydrodynamics: Application to Neutron Star Mergers

    Full text link
    We present a new 3D SPH code which solves the general relativistic field + hydrodynamics equations in the conformally flat approximation. Several test cases are considered to test different aspects of the code. We finally apply then the code to the coalescence of a neutron star binary system. The neutron stars are modeled by a polytropic equation of state (EoS) with adiabatic indices Γ=2.0\Gamma=2.0, Γ=2.6\Gamma=2.6 and Γ=3.0\Gamma=3.0. We calculate the gravitational wave signals, luminosities and frequency spectra by employing the quadrupole approximation for emission and back reaction in the slow motion limit. In addition, we consider the amount of ejected mass.Comment: 23 pages, 12 figures. Accepted for publication in Phys. Rev. D. v3: Final Versio

    Coalescing Binary Neutron Stars

    Get PDF
    Coalescing compact binaries with neutron star or black hole components provide the most promising sources of gravitational radiation for detection by the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact has motivated several different theoretical studies of the inspiral and hydrodynamic merging of compact binaries. Analytic analyses of the inspiral waveforms have been performed in the Post-Newtonian approximation. Analytic and numerical treatments of the coalescence waveforms from binary neutron stars have been performed using Newtonian hydrodynamics and the quadrupole radiation approximation. Numerical simulations of coalescing black hole and neutron star binaries are also underway in full general relativity. Recent results from each of these approaches will be described and their virtues and limitations summarized.Comment: Invited Topical Review paper to appear in Classical and Quantum Gravity, 35 pages, including 5 figure

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Relativistic Numerical Method for Close Neutron Star Binaries

    Full text link
    We describe a numerical method for calculating the (3+1) dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial 3-metric chosen to be conformally flat. Against this solution to the general relativistic field equations the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radiation signal is derived via a multipole expansion of the metric perturbation to the hexadecapole order including both mass and current moments and a correction for the slow motion approximation. Using this expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an acceleration term in the matter evolution.Comment: 15 pages, 5 figures. Figures available by anonymous ftp at ftp://cygnus.phys.nd.edu/pub/gr/gr-qc9601017

    Gravitational Waves from Gravitational Collapse

    Full text link

    Meteor Trails and Columniform Sprites

    No full text
    A theoretical model of columniform sprites (or c-sprites), a distinctive class of high altitude, temporally brief optical emissions, is presented and compared to observations which extends earlier work (1998, E. M. D. Symbalisty, R. Roussel-Dupré, and V. Yukhimuk, EOS Transactions of the AGU 79, No. 45, p. F129) by making a strong connection with meteors. The key features of the model are: (1) an ambient conductivity profile that falls between a measured nighttime and a measured daytime conductivity; (2) an aerosol reduced conductivity in a trail from a meteor that passed through some time during the evening, and (3) a cloud-to-ground (hereafter CG) lightning stroke, with sufficient charge transfer, subsequent to and occurring within an hour of the development of the reduced conductivity trail. The model predicts a temporally brief column of light resulting from the conventional breakdown of air in a strong electric field in the observed altitude range. For the case of a positive CG stroke the emissions are extinguished by the passage of a runaway electron beam. The electron beam is initiated by the same positive CG lightning stroke that allows the high altitude conventional breakdown to occur and propagates from the cloud tops to the ionosphere. Based on our modeling results, a negative CG lightning stroke, for the same amount of charge transfer, produces a column of light about twice as bright. The emissions are extinguished, in this case, by the ambient conductivity taking into account the increase due to the conventional breakdown of air. In both cases, for the CG lightning stroke parameters examined here, the simulated c-sprite emissions are brief and last less than 17 ms, or one CCD video field
    corecore