3 research outputs found

    Blood flow rate estimation in optic disc capillaries and vessels using Doppler optical coherence tomography with 3D fast phase unwrapping

    Get PDF
    The retinal volumetric flow rate contains useful information not only for ophthalmology but also for the diagnosis of common civilization diseases such as diabetes, Alzheimer's disease, or cerebrovascular diseases. Non-invasive optical methods for quantitative flow assessment, such as Doppler optical coherence tomography (OCT), have certain limitations. One is the phase wrapping that makes simultaneous calculations of the flow in all human retinal vessels impossible due to a very large span of flow velocities. We demonstrate that three-dimensional Doppler OCT combined with three-dimensional four Fourier transform fast phase unwrapping (3D 4FT FPU) allows for the calculation of the volumetric blood flow rate in real-time by the implementation of the algorithms in a graphics processing unit (GPU). The additive character of the flow at the furcations is proven using a microfluidic device with controlled flow rates as well as in the retinal veins bifurcations imaged in the optic disc area of five healthy volunteers. We show values of blood flow rates calculated for retinal capillaries and vessels with diameters in the range of 12-150 µm. The potential of quantitative measurement of retinal blood flow volume includes noninvasive detection of carotid artery stenosis or occlusion, measuring vascular reactivity and evaluation of vessel wall stiffness

    In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy

    No full text
    © 2020 by the authors.The non-invasive depth-resolved imaging of pictorial layers in paintings by means of linear optical techniques represents a challenge in the field of Cultural Heritage (CH). The presence of opaque and/or highly-scattering materials may obstruct the penetration of the radiation probe, thus impeding the visualization of the stratigraphy of paintings. Nonlinear Optical Microscopy (NLOM), which makes use of tightly-focused femtosecond pulsed lasers as illumination sources, is an emerging technique for the analysis of painted objects enabling micrometric three-dimensional (3D) resolution with good penetration capability in semi-transparent materials. In this work, we evaluated the potential of NLOM, specifically in the modality of Multi-Photon Excitation Fluorescence (MPEF), to probe the stratigraphy of egg-tempera mock-up paintings. A multi-analytical non-invasive approach, involving ultraviolet-visible-near infrared (UV-Vis-NIR) Fiber Optics Reflectance Spectroscopy, Vis-NIR photoluminescence, and Laser Induced Fluorescence, yielded key-information for the characterization of the constituting materials and for the interpretation of the nonlinear results. Furthermore, the use of three nonlinear optical systems allowed evaluation of the response of the analyzed paints to different excitation wavelengths and photon doses, which proved useful for the definition of the most suitable measurement conditions. The micrometric thickness of the paint layers, which was not measurable by means of Optical Coherence Tomography (OCT), was instead assessed by MPEF, thus demonstrating the effectiveness of this nonlinear modality in probing highly-scattering media, while ensuring the minimal photochemical disturbance to the examined materials.This research was funded by the European H2020 IPERION CH Project (Integrated Platform for the European Research Infrastructure ON Cultural Heritage (GA 654028, WP6); Spanish State Research Agency (AEI) and European Regional Development (FEDER) through Project CTQ2016-75880-P-AEI/FEDER, UE; and TOP Heritage-CM (S2018/NMT-4372) from the Community of Madrid and with the support of Plataforma Temática Interdisciplinar of CSIC “Patrimonio Abierto: Investigación y Sociedad” (PTI-PAIS).Peer reviewe
    corecore