2 research outputs found

    Local Modification of the Microstructure and Electrical Properties of Multifunctional Au–YSZ Nanocomposite Thin Films by Laser Interference Patterning

    No full text
    Nanocomposite films consisting of gold nanoparticles embedded in an yttria-stabilized zirconia matrix (Au–YSZ) have been synthesized with different gold loadings by reactive magnetron sputtering followed by ex situ annealing in air or laser interference patterning (LIP) treatment. It is shown that the electrical conductivity of the nanocomposite films can be modified to a large extent by changing the gold loading, by thermal annealing, or by LIP. The structural and microstructural analyses evidenced the segregation of metallic gold in crystalline form for all synthesis conditions and treatments applied. Thermal annealing above 400 °C is observed to trigger the growth of pre-existing nanoparticles in the volume of the films. Moreover, pronounced segregation of gold to the film surface is observed for Au/(Au + Zr + Y) ratios above 0.40, which may prevent the use of thermal annealing to functionalize gold-rich Au–YSZ coatings. In contrast, significant modifications of the microstructure were detected within the interference spot (spot size close to 2 × 2 mm) of LIP treatments only for the regions corresponding to constructive interference. As a consequence, besides its already demonstrated ability to modify the friction behavior of Au–YSZ films, the LIP treatment enables local tailoring of their electrical resistivity. The combination of these characteristics can be of great interest for sliding electrical contacts

    Surface Modification of Brass via Ultrashort Pulsed Direct Laser Interference Patterning and Its Effect on Bacteria-Substrate Interaction

    No full text
    In recent decades, antibiotic resistance has become a crucial challenge for human health. One potential solution to this problem is the use of antibacterial surfaces, i.e., copper and copper alloys. This study investigates the antibacterial properties of brass that underwent topographic surface functionalization via ultrashort pulsed direct laser interference patterning. Periodic line-like patterns in the scale range of single bacterial cells were created on brass with a 37% zinc content to enhance the contact area for rod-shaped Escherichia coli (E. coli). Although the topography facilitates attachment of bacteria to the surface, reduced killing rates for E. coli are observed. In parallel, a high-resolution methodical approach was employed to explore the impact of laser-induced topographical and chemical modifications on the antibacterial properties. The findings reveal the underlying role of the chemical modification concerning the antimicrobial efficiency of the Cu-based alloy within the superficial layers of a few hundred nanometers. Overall, this study provides valuable insight into the effect of alloy composition on targeted laser processing for antimicrobial Cu-surfaces, which facilitates the thorough development and optimization of the process concerning antimicrobial applications
    corecore