57 research outputs found

    Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution

    Get PDF
    BACKGROUND: Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5). Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. RESULTS: We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs), are heavily overrepresented (108,582 elements). 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. CONCLUSION: These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans

    European High Frequency Radar network governance

    Get PDF
    This report describes the governance of the European HF radar network including: the landscape of the Ocean observation networks and infrastructures, the role and links between operators of observational systems and stakeholders, the role and activities of the EuroGOOS HF radar Task Team in building a sound community strategy, the roadmap of the community with current achievements and future work lines

    Genome-wide approaches for identification of nuclear receptor target genes

    Get PDF
    Large-scale genomics analyses have grown by leaps and bounds with the rapid advances in high throughput DNA sequencing and synthesis techniques. Nuclear receptor signaling is ideally suited to genomics studies because receptors function as ligand-regulated gene switches. This review will survey the strengths and limitations of three major classes of high throughput techniques widely used in the nuclear receptor field to characterize ligand-dependent gene regulation: expression profiling studies (microarrays, SAGE and related techniques), chromatin immunoprecipitation followed by microarray (ChIP-on-chip), and genome-wide in silico hormone response element screens. We will discuss each technique, and how each has contributed to our understanding of nuclear receptor signaling

    Rational design of an estrogen receptor mutant with altered DNA-binding specificity

    Get PDF
    Although artificial C2-H2 zinc fingers can be designed to recognize specific DNA sequences, it remains unclear to which extent nuclear receptor C4 zinc fingers can be tailored to bind novel DNA elements. Steroid receptors bind as dimers to palindromic response elements differing in the two central base pairs of repeated motifs. Predictions based on one amino acid—one base-pair relationships may not apply to estrogen receptors (ERs), which recognize the two central base pairs of estrogen response elements (EREs) via two charged amino acids, each contacting two bases on opposite DNA strands. Mutagenesis of these residues, E203 and K210 in ERα, indicated that both contribute to ERE binding. Removal of the electric charge and steric constraints associated with K210 was required for full loss of parental DNA-binding specificity and recognition of novel sequences by E203 mutants. Although some of the new binding profiles did not match predictions, the double mutation E203R-K210A generated as predicted a mutant ER that was transcriptionally active on palindromes of PuGCTCA motifs, but not on consensus EREs. This study demonstrates the feasibility of designing C4 zinc finger mutants with novel DNA-binding specificity, but also uncovers limitations of this approach

    Stereospecific Lasofoxifene Derivatives Reveal the Interplay between Estrogen Receptor Alpha Stability and Antagonistic Activity in <i>ESR1</i> Mutant Breast Cancer Cells

    Get PDF
    Chemical manipulation of estrogen receptor alpha ligand binding domain structural mobility tunes receptor lifetime and influences breast cancer therapeutic activities. Selective estrogen receptor modulators (SERMs) extend ERα cellular lifetime/accumulation. They are antagonists in the breast but agonists in the uterine epithelium and/or in bone. Selective estrogen receptor degraders/downregulators (SERDs) reduce ERα cellular lifetime/accumulation and are pure antagonists. Activating somatic ESR1 mutations Y537S and D538G enable resistance to first-line endocrine therapies. SERDs have shown significant activities in ESR1 mutant setting while few SERMs have been studied. To understand whether chemical manipulation of ERα cellular lifetime and accumulation influences antagonistic activity, we studied a series of methylpyrollidine lasofoxifene derivatives that maintained the drug’s antagonistic activities while uniquely tuning ERα cellular accumulation. These molecules were examined alongside a panel of antiestrogens in live cell assays of ERα cellular accumulation, lifetime, SUMOylation, and transcriptional antagonism. High-resolution x-ray crystal structures of WT and Y537S ERα ligand binding domain in complex with the methylated lasofoxifene derivatives or representative SERMs and SERDs show that molecules that favor a highly buried helix 12 antagonist conformation achieve the greatest transcriptional suppression activities in breast cancer cells harboring WT/Y537S ESR1. Together these results show that chemical reduction of ERα cellular lifetime is not necessarily the most crucial parameter for transcriptional antagonism in ESR1 mutated breast cancer cells. Importantly, our studies show how small chemical differences within a scaffold series can provide compounds with similar antagonistic activities, but with greatly different effects of the cellular lifetime of the ERα, which is crucial for achieving desired SERM or SERD profiles. SIGNIFICANCE This study shows that antiestrogens that enforce a wild-type-like estrogen receptor alpha antagonist conformation demonstrate improved therapeutic activities in hormone-resistant breast cancer cells harboring activating Y537S ESR1 mutant

    Interactions moleculaires controlant la reconnaissance entre les recepteurs nucleaires et leurs elements d'ADN cible

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 81356 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Métabolisme des rétinoïdes et cancer

    No full text
    Les rétinoïdes jouent des rôles importants dans la différenciation cellulaire et l’apoptose, notamment dans les tissus épithéliaux. L’emploi d’acide rétinoïque (AR) dans le traitement de la leucémie promyélocytique aiguë (APL) a fourni la première démonstration de succès d’une thérapie anticancéreuse par un rétinoïde. Depuis, des traitements à base de rétinoïdes se sont révélés être d’une efficacité variable selon le type de cancer. Les voies métaboliques de synthèse et d’inactivation de l’AR sont affectées lors de la tumorigenèse et du traitement par les rétinoïdes. Une meilleure compréhension de la modulation de l’expression ou de l’activité des enzymes du métabolisme de l’AR pourrait permettre d’optimiser l’utilisation des rétinoïdes dans le traitement de différents types de cancers

    CAXII Is a Surrogate Marker for Luminal Breast Tumors Regulated by ER and GATA3

    No full text
    Estrogen receptor alpha (ERα) expression in ~2/3 breast tumors selects patients for hormonal therapies. Tumors negative for ERα but positive for the progesterone receptor (PR, encoded by PGR) have also been candidates for ER-targeting therapies, as PR expression may reflect undetected ER activity. Conversely, PR− status in ER+ tumors predicts a worse therapeutic response. Our analysis of breast tumor transcriptome datasets, however, revealed that in tumors with lower PGR expression, the clinical PR status does not correlate accurately with the expression of ESR1 or of ER target genes, including PGR itself. We identified carbonic anhydrase 12 (CA12) as an estrogen target gene better correlated with ESR1 than PGR, reflecting CA12 regulation by both ERα and the luminal factor and upstream ESR1 regulator GATA3. Immunostaining supported strong positive correlations at the protein level with ERα and GATA3 in a cohort of 118 tumors. Most ER+PR− tumors expressed CAXII at levels similar to those of ER+PR+ tumors, consistent with observations in tumor transcriptome datasets and with active estrogenic signaling in some ER+PR− breast cancer cell lines. The few ER−PR+ tumors did not express CAXII or the other luminal markers FOXA1 and GATA3. Overall, CAXII is a luminal marker that can help interpret ER status in single ER/PR positive tumors
    corecore