51 research outputs found

    Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells

    Get PDF
    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments

    Associations between aerobic fitness, negative symptoms, cognitive deficits and brain structure in schizophrenia - a cross-sectional study

    Get PDF
    Negative symptoms and cognitive deficits are common in individuals with schizophrenia, greatly affect their outcome, and have been associated with alterations in cerebral gray and white matter volume (GMV, WMV). In the last decade, aerobic endurance training has emerged as a promising intervention to alleviate these symptoms and improved aerobic fitness has been suggested as a key moderator variable. In the present study, we investigated, whether aerobic fitness is associated with fewer cognitive deficits and negative symptoms and with GMVs and WMVs in individuals with schizophrenia in a cross-sectional design. In the largest study to date on the implications of fitness in individuals with schizophrenia, 111 participants at two centers underwent assessments of negative symptoms, cognitive functioning, and aerobic fitness and 69 underwent additional structural magnetic resonance imaging. Multilevel Bayesian partial correlations were computed to quantify relationships between the variables of interest. The main finding was a positive association of aerobic fitness with right hippocampal GMV and WMVs in parahippocampal and several cerebellar regions. We found limited evidence for an association of aerobic fitness with cognitive functioning and negative symptoms. In summary, our results strengthen the notion that aerobic fitness and hippocampal plasticity are interrelated which holds implications for the design of exercise interventions in individuals with schizophrenia

    Association between aerobic fitness and the functional connectome in patients with schizophrenia

    Get PDF
    BACKGROUND: Schizophrenia is accompanied by widespread alterations in static functional connectivity associated with symptom severity and cognitive deficits. Improvements in aerobic fitness have been demonstrated to ameliorate symptomatology and cognition in people with schizophrenia, but the intermediary role of macroscale connectivity patterns remains unknown. OBJECTIVE: Therefore, we aim to explore the relation between aerobic fitness and the functional connectome in individuals with schizophrenia. Further, we investigate clinical and cognitive relevance of the identified fitness-connectivity links. METHODS: Patients diagnosed with schizophrenia were included in this cross-sectional resting-state fMRI analysis. Multilevel Bayesian partial correlations between aerobic fitness and functional connections across the whole brain as well as between static functional connectivity patterns and clinical and cognitive outcome were performed. Preliminary causal inferences were enabled based on mediation analyses. RESULTS: Static functional connectivity between the subcortical nuclei and the cerebellum as well as between temporal seeds mediated the attenuating relation between aerobic fitness and total symptom severity. Functional connections between cerebellar seeds affected the positive link between aerobic fitness and global cognition, while the functional interplay between central and limbic seeds drove the beneficial association between aerobic fitness and emotion recognition. CONCLUSION: The current study provides first insights into the interactions between aerobic fitness, the functional connectome and clinical and cognitive outcome in people with schizophrenia, but causal interpretations are preliminary. Further interventional aerobic exercise studies are needed to replicate the current findings and to enable conclusive causal inferences. TRIAL REGISTRATION: The study which the manuscript is based on is registered in the International Clinical Trials Database (ClinicalTrials.gov identifier [NCT number]: NCT03466112) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00406-022-01411-x

    Exercise as an add-on treatment in individuals with schizophrenia: results from a large multicenter randomized controlled trial

    Get PDF
    Current treatment methods do not achieve recovery for most individuals with schizophrenia, and symptoms such as negative symptoms and cognitive deficits often persist. Aerobic endurance training has been suggested as a potential add-on treatment targeting both physical and mental health. We performed a large-scale multicenter, rater-blind, parallel-group randomized controlled clinical trial in individuals with stable schizophrenia. Participants underwent a professionally supervised six-month training comprising either aerobic endurance training (AET) or flexibility, strengthening, and balance training (FSBT, control group), follow-up was another six months. The primary endpoint was all-cause discontinuation (ACD); secondary endpoints included effects on psychopathology, cognition, functioning, and cardiovascular risk. In total, 180 participants were randomized. AET was not superior to FSBT in ACD and most secondary outcomes, with dropout rates of 59.55% and 57.14% in the six-month active phase, respectively. However, both groups showed significant improvements in positive, general, and total symptoms, levels of functioning and in cognitive performance. A higher training frequency additionally promoted further memory domains. Participants with higher baseline cognitive abilities were more likely to respond to the interventions. Our results support integrating exercise into schizophrenia treatment, while future studies should aim to develop personalized training recommendations to maximize exercise-induced benefits

    Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis <it>in vivo</it>, from the start point to tumor establishment.</p> <p>Results</p> <p>We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without <it>in vitro </it>telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants.</p> <p>Conclusions</p> <p>TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.</p

    siRNA–Mediated Methylation of Arabidopsis Telomeres

    Get PDF
    Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA–based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin structure and RNA transcription at chromosome termini in Arabidopsis. Arabidopsis telomeres display features of intermediate heterochromatin that does not extensively spread to subtelomeric regions which encode transcriptionally active genes. We also found telomeric repeat–containing transcripts arising from telomeres and centromeric loci, a portion of which are processed into small interfering RNAs. These telomeric siRNAs contribute to the maintenance of telomeric chromatin through promoting methylation of asymmetric cytosines in telomeric (CCCTAAA)n repeats. The formation of telomeric siRNAs and methylation of telomeres relies on the RNA–dependent DNA methylation pathway. The loss of telomeric DNA methylation in rdr2 mutants is accompanied by only a modest effect on histone heterochromatic marks, indicating that maintenance of telomeric heterochromatin in Arabidopsis is reinforced by several independent mechanisms. In conclusion, this study provides evidence for an siRNA–directed mechanism of chromatin maintenance at telomeres in Arabidopsis
    • …
    corecore