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Aberrant activation of telomerase occurs in 85–90% of all cancers and under-

pins the ability of cancer cells to bypass their proliferative limit, rendering

them immortal. The activity of telomerase is tightly controlled at multiple

levels, from transcriptional regulation of the telomerase components to

holoenzyme biogenesis and recruitment to the telomere, and finally acti-

vation and processivity. However, studies using cancer cell lines and other

model systems have begun to reveal features of telomeres and telomerase

that are unique to cancer. This review summarizes our current knowledge

on the mechanisms of telomerase recruitment and activation using insights

from studies in mammals and budding and fission yeasts. Finally, we dis-

cuss the differences in telomere homeostasis between normal cells and

cancer cells, which may provide a foundation for telomere/telomerase

targeted cancer treatments.

provided by UCL 
1. Introduction: chromosome maintenance and cell
proliferation

1.1. Telomere homeostasis in normal and cancer cells
All dividing eukaryotic cells require telomeres to maintain the ends of the

chromosomes and sustain chromosome stability. To protect the genetic

information contained within the chromosomes, telomeres sacrifice their non-

coding DNA sequences in the erosion that occurs during DNA replication in

each cell cycle [1,2]. Most somatic cells that have undergone sufficient cell div-

isions to cause critical telomere shortening enter into replicative senescence.

However, some cells, including lymphocytes, germ cells, stem cells and unicel-

lular eukaryotes like yeast, express the enzyme telomerase, which has the ability

to replenish telomeres and allow further replicative potential [3–7].

Telomerase is a ribonucleoprotein complex, composed of a reverse tran-

scriptase enzyme catalytic subunit and a long non-coding RNA that contains

the template sequence for telomere synthesis [6]. Whereas expression of the tel-

omerase components is tightly regulated in differentiated cells, the vast

majority of human cancers express active telomerase, effectively rendering

them immortal [8–10]. A direct correlation between telomere maintenance

and indefinite cell division was demonstrated in vitro by ectopic expression of

telomerase in somatic cell culture [11]. However, while cancer cells stably main-

tain telomeres, they tend to be short [12,13]. In particular, some of them are

critically short, termed ‘t-stumps’ [14], resulting in immortal cells that sustain

a high risk of chromosome instability. This is strikingly different from our

understanding of telomerase action in normal cells, in which telomerase prefer-

entially elongates shorter telomeres until they are no longer short [15–17]. Why
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telomerase acts differently in cancer cells remains a mystery.

In this review, we summarize our current knowledge of fun-

damental telomerase action, and highlight the phenotypes

uniquely observed in cancer cells.

1.2. Proliferation and protection: the problems faced by
telomeres

Progressive telomere shortening occurs each time a cell

divides owing to incomplete replication of linear chromo-

some ends by the conventional DNA polymerases. This

shortening is termed the end replication problem [18].

Nucleases also trim the telomeres to shape the chromosome

ends for protection, thereby causing loss of telomeric DNA

after S phase [19]. DNA replication-associated telomere

shortening limits the number of divisions a cell can undergo,

known as the Hayflick limit, before triggering the cessation of

growth [20]. Once telomeres become critically short, the DNA

damage response machinery is activated, and cells enter

replicative senescence or undergo programmed cell death

[21,22]. Telomere shortening leading to programmed cell

death is a major tumour suppressor mechanism, and as

such, most cancer cells require telomerase to be active in

order to survive.

In the absence of the senescence checkpoint per se, criti-

cally short telomeres become ‘uncapped’; they lose their

end protection ability. One essential role of the telomeres is

the differentiation of bona fide chromosomal ends from

damaged DNA double-stranded breaks [23,24]. This function

is indispensable for maintaining chromosome integrity, as

illicit repair of chromosome ends could result in chromosome

fusions. Such fusions would induce mitotic arrest and cell

death [25] or cause breakage–fusion–bridge cycles in sub-

sequent cell divisions, leading to translocations, aneuploidy

and eventually genomic instability [26]. This is called the

end protection problem.
2. The structure of telomeres and
telomerase

2.1. The shelterin complex and telomere conformation
Telomeres are specialized DNA–protein complexes found at

the ends of all linear chromosomes. Telomeric DNA is com-

posed of arrays of short guanine-rich tandem repeats, and

while most of the telomere is double-stranded (ds), they ter-

minate in a single-stranded (ss) G-rich 30 overhang called the

G-tail [24,27–29]. These telomeric ds and ssDNA repeats are

covered by a specialized protein complex, termed shelterin, to

evade recognition of the chromosome ends by the DNA

damage response machinery. Together with the shelterin

complex, telomeres establish a heterochromatin structure

that packages up the ends of the chromosomes and prevents

them from being aberrantly recognized as DNA double-

stranded breaks (DSBs) [30]. The G-tail is thought not to be

exposed, but rather hidden within the dsDNA by forming a

displacement loop (D-loop). Telomeres are further compacted

into a lasso-like structure called a t-loop with the aid of the

proteins in the shelterin complex [31,32]. In addition, the shel-

terin complex interacts with DNA damage response factors,

preventing induction of their downstream pathways. Thus,
failure of the chromosome ends to interact with shelterin

can expose the DNA ends and elicit the DNA damage

response [23,24,33].

In mammals, shelterin is composed of six proteins: TRF1,

TRF2, RAP1, TIN2, ACD (previously known as TPP1) and

POT1 (figure 1a) [34]. TRF1 and TRF2 bind the telomeric

dsDNA and recruit TIN2, which associates with ACD.

POT1 forms a heterodimer with ACD and directly binds to

the telomeric ssDNA at the D-loop and the G-tail. Thus,

the shelterin complex formation bridges the telomeric ds

and ssDNA and stabilizes the telomeric proteins. It is

also thought to negatively regulate telomere lengthening

[35–40]. TRF2 is required for the formation of t-loops

[31,32] and for suppressing ATM activation and non-

homologous end-joining (NHEJ) of chromosome ends [41].

These functions are promoted by TRF2-dependent topo-

logical changes [42]. RAP1, which binds to TRF2, is also

thought to play a role in inhibiting NHEJ and homology

directed repair but its actual function remains debatable

[43,44]. TRF2 and RAP1 may be redundantly required for

telomere protection even though RAP1 localization is depen-

dent on TRF2. Interestingly, TRF2 and RAP1 also bind to

internal telomere sequences and modulate transcription

[45]. TRF1 is dispensable for end protection, but is required

for lagging strand synthesis during DNA replication [46].

POT1 blocks the binding of replication protein A (RPA) to

the telomeric ssDNA, thereby preventing recruitment of

ATR [23]. Among the members of the shelterin complex,

TIN2 and ACD are responsible for recruiting telomerase to

the telomeres (discussed in a later section).

The shelterin complex is well conserved between fission

yeast and mammals (figure 1b) [34,47,48]. The telomeric

dsDNA binding protein Taz1 (orthologue of TRF1 and

TRF2 in mammals) supports the replication of telomeric

DNA and inhibits the NHEJ pathway [49,50]. Pot1 directly

binds the telomeric ssDNA to inhibit degradation of chromo-

some ends [51]. Like mammalian shelterin, Taz1 forms the

shelterin bridging structure with Rap1, Poz1 (TIN2 ortholo-

gue), Tpz1 (ACD orthologue) and Pot1 [48]. Thus, fission

yeast shelterin also connects the ds and ss telomeric DNA,

and maintenance of this connection has been shown to nega-

tively regulate telomerase activity [48,52–55]. Tpz1 also

interacts with Ccq1, which recruits telomerase [48,56]. We

believe that mammalian TIN2 may be a bifunctional protein

orthologue of fission yeast Poz1 and Ccq1 (discussed later).

While each protein has a distinct role, the overall formation

of the shelterin complex is crucial for telomere maintenance

and telomerase regulation.

Although a shelterin-like protein complex has not been

found, budding yeast has been the best-studied model

system for telomere biology. In this organism, Rap1 directly

binds the telomeric dsDNA and, with its associated proteins

Rif1 and Rif2, negatively controls telomerase action [57,58].

Cdc13 solely binds the telomeric ssDNA to recruit and stabil-

ize telomerase [59–61]. Although these proteins do not

associate to bridge the ds and ss telomeric DNA (figure 1c),

each protein functions to maintain telomere structure and

protect the chromosome ends. Importantly, the mechanisms

and principles of telomeric protein-mediated telomere

homeostasis observed in budding yeast appear to be largely

conserved to fission yeast and mammals (conservation of

the structure and function of telomeres and telomerase has

been reviewed [24,47,62,63]).

http://rsob.royalsocietypublishing.org/
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Figure 1. Shelterin conservation at the telomere from yeast to mammals. Schematic diagrams depict the proteins of the shelterin complexes and telomerase
complex in (a) mammalian cells and (b) fission and (c) budding yeasts. Orthologous proteins are shaded in the same colour. Known interactions with the telomerase
complexes and chromatin modifying proteins are indicated. Other interaction proteins are omitted from these diagrams.
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2.2. Telomerase structure and accessory proteins in
fission yeast and mammals

The core components of telomerase comprise the telomerase

RNA (TER1 in fission yeast and TR or TERC in mammals)

and the catalytic reverse transcriptase protein (Trt1 in fission

yeast and TERT in mammals) [64]. The reverse transcriptase

subunit has been well conserved throughout evolution [65].

It can be divided into three major structural and functional

domains: a telomerase essential amino-terminal domain

(TEN), a telomerase RNA-binding domain (TRBD) and a

reverse transcriptase domain (reviewed in [66]). In contrast,

the telomerase RNA varies widely in length and sequence

between different organisms [67–69], and accommodates dis-

tinct RNA recognition proteins. However, some conserved

functional elements exist, including the template domain, a

template boundary element to limit the extent of reverse tran-

scription, and a pseudo-knot domain important for binding

to the telomerase catalytic protein [70]. While these two

core components alone are required for in vitro telomere syn-

thesis [71], the telomerase accessory proteins contribute to the

assembly, stabilization and trafficking of telomerase

(reviewed in [72]).
In fission yeast, the Sm family of proteins associate with

the TER1 RNA, contributing to telomerase maturation and

stability. Subsequent replacement of Sm with the Lsm2–8

complex promotes Trt1–TER1 interaction [73]. Est1 directly

binds TER1 and directs telomerase to telomeres through an

interaction between its 14-3-3-like domain and the shelterin

component Ccq1 [74,75].

In mammals, telomerase RNA maturation uses ribosomal

RNA biogenesis (reviewed in [76]). The telomerase RNA,

TERC, is part of a group of RNAs called H/ACA and binds

to a tetrameric complex, composed of the dyskerin, NAF1,

NHP2 and NOP10 proteins [77,78]. This H/ACA ribonucleo-

protein complex stabilizes TERC and ensures the localization

of telomerase to small sub-nuclear organelles called Cajal

bodies where NAF1 is replaced by GAR1 [79–81]. Once

inside the Cajal bodies, TERC associates with TERT to form

the mature telomerase complex. After the assembly of a mini-

mal telomerase complex containing TERT, TR and dyskerin,

interaction with a protein called TCAB1 facilitates trafficking

of telomerase to the telomeres [82].

Mammalian telomerase biogenesis additionally requires

the molecular chaperones heat shock protein 90 (HSP90)

and P23, which bind TERT for assembly with TERC. They

http://rsob.royalsocietypublishing.org/
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are also thought to provide a binding site for proteins which

link to the dynein–dynactin motor, thereby promoting the

transport of hTERT to the nucleus along microtubules [83].

In mammals, the yeast Est1 orthologue, EST1A (SMG6), inter-

acts with TERT and can bind to the telomeric ssDNA [84].

However, Est1A is not directly involved in telomerase recruit-

ment but rather telomere protection and maintenance [85]. It

also plays a role in nonsense mediated-mRNA decay and

appears to affect the abundance of telomeric RNA transcripts

called TERRA [86], which contribute to the regulation of

telomere length homeostasis (reviewed in [87]).
Open
Biol.7:160338
3. Fundamental mechanisms of telomerase
action in yeasts and mammals

3.1. Telomerase expression and cellular proliferation
The level of functional telomerase enzyme expressed in a

wide range of different cell types has been characterized

using the telomeric repeat amplification protocol assay. This

method essentially allows a measure of the telomerase

activity contained within a cell lysate in vitro [9]. Using this

assay, it has been well documented that most differentiated

somatic cells lack detectable telomerase activity [9,10],

explaining the propensity for telomere shortening through

successive cell divisions [11–13,88].

Telomerase is, however, highly expressed in adult testes

and ovaries, allowing consistently longer telomeres to be

inherited by the next generation [4,13]. Telomerase remains

active during early embryonic development but expression

declines after the blastocyst stage and can no longer be

detected in neonatal somatic cells [4,89,90]. Nevertheless,

most stem cell populations possess weak telomerase activity

[3,5,9,10], which is not sufficient to immortalize cells but

does extend the proliferative ability of these self-renewal

tissues (reviewed in [91,92]). Notably, the Hayflick limit of

somatic cells can be indefinitely evaded when telomere

length is maintained by high ectopic expression of telomerase

[11]. Therefore, the level of telomerase expression defines

telomere length homeostasis and proliferative capacity.

3.2. Common mechanisms for telomerase recruitment
To maintain telomere length homeostasis, active telomerase

needs to be efficiently recruited to every short telomere.

Although telomeric proteins and telomerase components

differ between budding and fission yeasts and mammals,

on-going studies reveal that fundamental common features

operate in telomerase action. In yeasts, telomerase is specifi-

cally recruited to shortened telomeres and the shorter

telomeres are elongated the most during S phase [17]. As

shorter telomeres can accommodate fewer telomeric DNA

binding proteins, a quantitative negative regulation effect is

thought to define the frequency of telomerase recruitment

[93,94]. This system allows telomeric DNA to be retained at

every chromosome end despite the presence of only a few

molecules of active telomerase (figure 2a). This model has

also been indirectly demonstrated in mammals using TERT

heterozygous mouse cells [15].

The mechanism of telomerase recruitment was originally

best defined in budding yeasts. Recruitment of telomerase

during S phase is mediated by association of Est1 and the
single-stranded telomeric DNA binding protein Cdc13 [95–

99]. This interaction is triggered via phosphorylation of

Cdc13 by the DNA damage response kinases Tel1/Mec1

(ATM/ATR orthologues) and the cell cycle coordinator

Cdk1 [61,99–103]. As mentioned, telomerase recruitment

occurs preferentially at short telomeres owing to a quantitat-

ive negative regulation effect of telomere-bound Rap1 [93,94].

Several studies have shown that recruitment of telomerase

to the telomere in fission yeast occurs via direct interaction of

the telomerase accessory protein Est1 with Ccq1, the telo-

meric Tpz1 (ACD orthologue) binding protein. This occurs

after phosphorylation of Ccq1 by the Rad3 and Tel1 kinases

(ATR and ATM orthologues respectively) [68,69,75,104,105].

However, recent work indicates that the Ccq1–Est1 inter-

action is likely to be transient, as association of Est1 with

TER1 and Ccq1 is mutually exclusive [75,106]. Further

stable association of telomerase at the telomere is achieved

via interactions between Tpz1, Ccq1 and Trt1 [106,107]. The

telomeric dsDNA binding protein Taz1 (TRF1/2 orthologue)

restricts Rad3/Tel1 activation and telomerase recruitment at

the telomere, limiting telomerase recruitment to S phase of

the cell cycle [108,109]. Similar to the quantitative negative

regulation effect observed in budding yeast, Taz1 suppresses

activation of Rad3/Tel1 in a telomere length-dependent

manner. Therefore, Rad3 and telomerase are efficiently

recruited to short telomeres.

Mammalian telomerase recruitment also occurs in S

phase of the cell cycle. The rest of the time it appears to be

concentrated in Cajal bodies or elsewhere in the nucleus

[110,111]. The POT1–ACD complex is known to associate

with telomerase [112–114]. TIN2, the shelterin protein that

bridges TRF1/2 and ACD, is crucial for ACD localization at

telomeres and is also involved in telomerase recruitment

[30,114–116]. Similar to yeasts, phosphorylation of a telo-

meric protein, ACD, occurs during S phase by a kinase,

Cdk1, which is thought to increase the stability of its inter-

action with TERT [117]. However, this phosphorylation-

mediated interaction remains debatable [118]. Therefore,

how the interaction of ACD and telomerase is achieved

remains to be elucidated. It is possible that TIN2 may func-

tion like Ccq1 in fission yeast and initiate the interaction

between ACD and TERT. In support of this hypothesis, the

TIN2-R282H mutation, which is found in patients with dys-

keratosis congenita, impairs telomerase recruitment,

whereas ACD recruitment and shelterin formation are unaf-

fected [116,119]. Another similarity to the yeast recruitment

process is the contribution of ATM/ATR signalling to

telomere elongation. Phosphorylation of the shelterin com-

ponent TRF1 at an ATM/ATR target site (S367) has been

shown to increase telomerase recruitment [120,121]. As

with yeasts, mammalian telomeres are also thought to have

a quantitative negative regulatory effect, with proteins such

as TRF1 and TRF2 negatively regulating telomere extension

by telomerase [122,123]. However, quantification of TRF1

and TRF2 molecules on the telomeres suggests the number

of TRF proteins is limited and long telomeres may not

possess more [124,125]. Indeed, an alternative telomeric

DNA binding protein, TZAP, binds to long telomeres in a

manner that is mutually exclusive to TRF protein binding

[126]. TZAP functions to trim the telomeres by excising the

t-loop, thereby making long telomeres short. As TZAP coun-

teracts the possession of very long telomeres, we anticipate

that it may also function in restricting telomerase activity.

http://rsob.royalsocietypublishing.org/
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The three model systems described above highlight

common fundamental features of telomerase recruitment.

The DNA damage checkpoints appear to monitor and flag

the shorter telomeres that harbour fewer numbers of the

telomere dsDNA binding proteins. In fission yeast and

mammals, a direct interaction between the OB (oligosacchar-

ide/oligonucleotide)-fold domain of Tpz1 and ACD,

especially the so-called TEL patch on the surface [127], and

the TEN domain of the telomerase catalytic subunit is necess-

ary for both telomerase retention and processivity

[106,107,114,128–130]. Notably, mammalian TIN2 and fis-

sion yeast Ccq1, which bind to the C-terminus of ACD and

Tpz1 respectively, are also required for telomerase recruit-

ment, as demonstrated by loss of function mutations

[104,116]. TIN2 and Ccq1 also recruit and associate with the

heterochromatin proteins to control the status of conden-

sation or cohesion at telomeres [131–135]. Owing to the

similarities in function between TIN2 and Ccq1 in terms of

end protection, telomerase recruitment and interaction with

chromatin modifying proteins, it is tempting to speculate

that Ccq1 may be the functional equivalent of mammalian

TIN2. The connection between telomere architecture and tel-

omerase accessibility is slowly being uncovered [30]. Both

fission yeast and mammalian shelterin formation controls

the extendible, non-extendible and extending states [52].

Thus, although the structural similarities of fission yeast

and mammalian shelterin proteins are not great, their

functions and roles are highly conserved.
3.3. Current models of telomerase activation
Once telomerase is at the telomere, the single-stranded 30

overhang at the distal end of the telomeric DNA forms the

substrate for telomerase. This anneals with the template

region on the telomerase RNA to form a DNA/RNA

hybrid, and one repeat of telomeric DNA can be added to

the end of the 30 tail using the complementary RNA sequence

as a template. Telomerase then repositions its RNA template

on the 30 end of the substrate and adds another telomeric

repeat. The ability of a single telomerase complex to add mul-

tiple repeats in a single cell cycle without dissociation is

termed repeat addition processivity (RAP) [136,137]. The

exact mechanism by which telomerase can reposition itself

on the template remains to be elucidated. Single molecule

imaging of telomerase revealed that rearrangement of the tel-

omerase RNA molecule is coupled with catalytic action,

posing a possible model for resolution of the DNA/RNA

hybrid and translocation of the RNA template after synthesis

[138]. Thus, it is becoming increasingly clear that multiple

factors affect the processivity or activity (how fast nucleotides

are added) of telomerase after it has been recruited to the

telomere.

In mammals, stable association of telomerase with the

POT1–ACD complex occurs after recruitment to telomeres.

Binding of POT1–ACD to the telomeric ssDNA has been

shown to decrease the rate of RNA primer dissociation, aid

template translocation and enhance telomerase processivity

http://rsob.royalsocietypublishing.org/
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in vitro [112,139]. Indeed, mutations within the TEL patch in

the OB fold of ACD, which impair association with TERT,

have been shown to decrease processivity of telomerase by

POT1–ACD in vitro, compared with wild-type ACD

[127,140]. Interestingly, however, another recent study

found that the POT1–ACD complex increases not only telo-

merase processivity but also activity, resulting in more

rapid dissociation from the primer [141]. Thus, ACD-

mediated retention of TERT improves telomerase processivity

and activity.

The TEN domain of mammalian TERT has dual func-

tions. In addition to binding the OB-fold domain of ACD

for telomerase recruitment and RAP stimulation, the TEN

domain supports the stable formation of the RNA–DNA

duplex in the active site of the enzyme [142–144]. The reverse

transcriptase and C-terminal domains of telomerase have also

been proposed to interact with the telomeric DNA substrate

to help promote RAP [145,146]. Thus, while the TEN

domain of TERT associates with ACD for recruitment, it

also promotes stable association of TERT with the telomeric

ssDNA for repeat synthesis. How these two activities of the

TEN domain are coordinated remains to be elucidated.

Recent studies have begun to demonstrate that recruit-

ment of telomerase to the telomere in S/G2 phase does not

equate to activation of the enzyme. In mammals, a residue

within ACD (L104), found on the opposite face of the OB

fold to the TEL patch, has been implicated in regulating telo-

merase activity. Mutation of this residue causes short

telomeres despite the mutant protein binding a similar

amount of telomerase to mutant ACD proteins in cells with

longer telomeres [118,127]. Intriguingly, a mutant form of

the ACD orthologue in fission yeast, Tpz1 (K75A), also

cannot maintain telomere length despite being fully capable

of recruiting telomerase to telomeres [106,107]. Nevertheless,

a stable interaction between Tpz1 and Trt1 is required for the

processive activity of telomerase, as the Tpz1 (K75A)

mutation could be overcome by fusion of Tpz1 directly to

Trt1 [106]. However, telomerase activity requires Ccq1 associ-

ation with the telomerase-bound Tpz1. It has been proposed

that recruitment of telomerase by Ccq1 might temporally and

locally resolve shelterin formation to allow access to the telo-

meric 30 end [52]. Thus, these studies demonstrate that

association of telomerase with telomeres is not sufficient to

regulate telomere length and a subsequent activation step

must exist.

In budding yeast, another telomerase component, Est3,

complexes with Est1 and Est2 at the telomere in S/G2

phase to activate telomerase [96,97,147,148] (figure 1c). Est3

is composed of the OB-fold domain and interacts with the

TEN domain of Est2 with the aid of Est1 [149]. It has been

proposed that the surface residues on Est3 required for telo-

merase activation might be comparable to residue L104 in

ACD [150]. Thus, in all three model organisms, telomerase

activation requires a stable association with the OB-fold

ACD family of proteins as well as conformational changes

in telomere structure to provide telomerase with access to

the ssDNA end.

3.4. Termination of telomerase activity
To understand the processivity of telomerase, we also need to

know how telomerase action is terminated. Several factors at

the telomeres can inhibit, rather than stimulate, telomerase
processivity. The CST (CTC1, STN1 and TEN1) complex, of

which homologues for STN1 and TEN1 exist in fission and

budding yeast, is thought to terminate telomere elongation

by recruiting DNA polymerase alpha to the ssDNA over-

hang, thereby displacing telomerase [151–153]. Studies in

budding yeast have shown that Stn1 replaces Est1 as the

Cdc13 binding partner and blocks further telomerase recruit-

ment after S phase [154,155]. However, because telomerase

can repeatedly access the same telomere for further extension

during S phase, we may need to separately consider termin-

ation of processivity and inhibition of telomerase recruitment.

The lack of coupling between telomere extension and tel-

omere lagging strand synthesis may itself lead to inhibition or

termination of telomerase processivity. The presence of a long

G-tail can encourage the formation of certain structural con-

formations in the telomeric DNA, such as G-quadruplexes,

which could potentially inhibit the access of telomerase to

the telomere [32,52,156]. The POT1–ACD complex plays a

role in preventing the formation of such secondary structures

[112,139], as does RPA in fission yeast [157]. As such, the

extent of telomere extension may well be monitored/con-

trolled by the amount of ssDNA binding proteins recruited

to the telomere. Further investigations will be needed to

define these differences and to reveal how telomerase is tem-

porally released from the 30 telomeric overhang to terminate

processivity.
4. Telomere biology in cancer
4.1. Unique features of telomerase action in cancer
Telomerase reactivation or upregulation is a critical feature in

the vast majority of cancers. While the mechanisms control-

ling hTERT expression are not fully understood, they are

thought to include hTERT promoter mutations, alterations

in alternative splicing of hTERT pre-mRNA, hTERT gene

amplification, epigenetic changes and disruption of the telo-

mere position effect machinery (reviewed in [158]). Many

studies carried out in human cells in actual fact use estab-

lished cancer cell lines, because primary cells senesce in cell

culture without the induction of telomerase expression. The

characterization of telomeres in cancer cells has revealed

that activated telomerase can largely maintain telomere

length homeostasis as well as cell proliferation. The average

length at which telomeres are maintained directly correlates

with the expression level of telomerase [159–161]. Neverthe-

less, despite the fact that many cancer cells express highly

active telomerase [9,10], their telomeres are shorter than in

paired differentiated normal tissue [162,163]. Strikingly, a

subset of telomeres are left very short (t-stumps) in cancer

cells [14]. Thus, although activated telomerase maintains

chromosome ends overall, the manner in which the telomeres

are maintained appears to differ from that in normal tissue,

such as germ cells.

The reason for the persistent presence of short telomeres

in cancer cells might originate from some modified action

of telomerase. Our understanding of telomerase from studies

in yeasts and murine embryonic stem cells is that it preferen-

tially elongates shorter telomeres until they are no longer

short [15,17]. In contrast, in cancer cells, the majority of telo-

meres are elongated, but they are only extended a short

length [164]. A recent single cell live imaging study using
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HeLa cells demonstrated that human telomerase forms short

dynamic interactions with the majority of telomeres, probing

each chromosome end multiple times during S phase [165].

Thus, we predict that cancer telomerase targets every telo-

mere but only extends them a little (figure 2b). This model

would explain how some telomeres can be left at a short

length or lost but the overall mean telomere length reflects/

correlates with the amount of active telomerase.

Curiously, telomere extension by telomerase is not

coupled with synthesis of the complementary C-rich strand

by polymerase alpha [164], leading to long G-tail extensions

during S phase. It has been proposed that telomerase recruit-

ment/retention (and hence processivity) is terminated by

recruitment of the CST complex, which associates with the

polymerase alpha complex [151,152,166]. However, the prob-

ing interactions described in HeLa cells are only rarely

converted into static interactions long enough to allow telo-

mere elongation [165]. Thus, it is possible that telomerase

might associate with telomeres in an unstable manner in

cancer cells, and therefore it exhibits low processivity and

dissociates before C-strand synthesis.

The hallmark of irregular telomerase action in cancer cells

might also/otherwise stem from the presence of alternatively

spliced hTERT mRNA isoforms. Alternative splicing events

are commonly observed in the majority of cancer cells, and

can both control transcript abundance and contribute to pro-

teome diversity [158]. hTERT mRNA is alternatively spliced

in a wide range of species [167], and a number of variants

are co-expressed at significant levels in tumour and stem

cells [168–170]. However, the regulation and function of

these splice variants is not well understood. Expression of a

major splice variant lacking most of the RT domain has

been correlated with low telomerase activity in cancers

[171,172], and a recent study has shown that the translated

protein product can bind the telomerase RNA and suppress

telomerase activity [173], presumably by competing with

the fully functional hTERT isoform for TERC binding. There-

fore, such deletions or substitutions of other key residues and

domains may well affect the association of telomerase with

shelterin components or the telomeric ssDNA overhang.

The shelterin complex proteins are important not only for

telomerase recruitment but also for control of the DNA

damage response and cell cycle control machineries at telo-

meres. These machineries are impaired or altered in cancer

cells. Several mutations in genes encoding the components

of the shelterin complex have also been identified in cancers.

These mutations might affect telomere status and telomerase

accessibility or processivity. For example, in familial cases of

chronic lymphocytic leukaemia (CLL) loss-of-function

mutations in POT1, affecting either its interaction with the

telomeric ssDNA or with ACD, were found to co-segregate

with CLL [174]. Furthermore, in melanoma patients,

elongated telomeres were associated with mutations that

impair telomeric ssDNA binding and Pot1–ACD–TIN2

interactions [175–178]. Such mutations would impair the

complete formation of the shelterin bridge between the ds

and ss telomeric DNA, disrupting the telomerase non-

extendible state. Finally, in patients with myeloproliferative

neoplasms, significantly reduced telomere length has been

associated with elevated levels of POT1 and TIN2 expression,

and downregulation of ACD and RAP1 compared with

healthy controls [179]. It is not clear whether these alterations

in the genes encoding the shelterin components are a cause or
a consequence of the cancers. However, abnormal expression

and/or function of the shelterin proteins is likely to contrib-

ute to telomere dysfunction, thereby driving genetic

aberrations and cancer pathogenesis. At present, the factors

contributing to the hallmarks of telomeres unique to cancer

remain a mystery. However, growing data indicate that

cancer cells may harbour impairments affecting the later

stages of telomerase activity regulation, such as the target-

ing and processivity of telomerase, thereby leaving some

telomeres short.

On top of aberrant telomerase action, overall shortening

of telomeres could be consequences of selection. Random

addition of telomeric repeats should lead to some very long

telomeres. As the amount of telomeric proteins are limited,

insufficient binding of the TRF proteins can cause fragile tel-

omeres and constitutive DNA damage [46]. Hence, cells

containing long telomeres are sensitive to further DNA

damage and could be selectively eliminated by cell death

[180]. Alternatively, homologous recombination or TZAP

may become highly active in cancer cells, thereby actively

trimming long telomeres. Further investigation into the func-

tions of the telomeric proteins and their potential aberrations

in cancer would benefit our understanding of how telomere

homeostasis is differently maintained in cancer cells.
4.2. Targeting cancer telomeres and telomerase
Telomerase is an attractive potential drug target in the fight

against cancer owing to its low/absent expression levels in

normal somatic cells and high expression in cancer. Robust

hTERT inhibition can lead to progressive telomere shortening

and eventually cancer cell death. Thus, it should be possible to

target cancer cells reasonably selectively, while the effect on

normal cells should be minimal [181]. Several different com-

pounds that directly target telomerase activity are currently

under development, for example antisense oligonucleotides

such as imetelstat/GRN163L (reviewed in [8]) and small mol-

ecules targeting hTR or hTERT such as BIBR1532 [182].

However, there is a long lag time between administration

and clinical response for therapies that target telomerase

activity, as telomeres must shorten before the effect is seen

[8]. As such, therapies that target the non-canonical functions

of telomerase, or which induce a DNA-damage response

(DDR) at telomeres (i.e. 6-thio-dG, G-quadruplex stabili-

zers and oligonucleotides homologous to the 30 telomeric

overhang) may present a better treatment option [8,183].

Overexpression of an hTERT variant, which lacks most of

the RT domain, was found to confer cells with a protective

advantage against cisplatin-induced apoptosis, indicating a

telomere homeostasis independent role for hTERT in cancer

pathophysiology [173]. Thus, elucidating the connection

between telomerase regulation and the regulation of RNA

splicing has a great deal of potential to provide new insights

into cancer biology [8]. Similarly, inhibition of the functions

of the shelterin proteins could present a viable therapeutic

option. For example, TRF1 is overexpressed in many types

of cancer and plays an important role in telomeric DNA repli-

cation. Loss of TRF1 leads to uncapping of telomeres

regardless of telomere length, and has been shown to

impair lung tumour growth in mouse models [184]. How-

ever, it is not clear what effects targeting the shelterin

proteins would have on normal cells.
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It has been demonstrated that hTERT is also involved in

upregulation of tRNAs [185] and WNT/b-catenin signalling

[186] by interacting with their promoter regions. This non-

canonical function of TERT appears to be TERC and RT

activity-independent. Such aberrant transcription owing to

TERT reactivation contributes to carcinogenesis. Therefore,

inhibitors against multifunctional tankyrase, which is

involved in telomere homeostasis, mitotic spindle formation

and WNT/b-catenin signalling, and HSP90, which is

involved in signal transduction, intracellular transport and

protein degradation, have been explored to selectively kill

cancer cells [183]. Finally, a number of immunotherapies

are being tested in clinical trials, which aim to sensitize the

immune system to tumour cells expressing protein fragments

or peptides of telomerase on their cell surface. These are

among the most promising telomerase targeting therapeutics,

with hTERT specific immune responses being seen in telo-

merase positive tumours, minimal effects in normal cells

and no autoimmunity (reviewed in [8]). Thus, there is a lot

of potential in anti-telomerase therapeutics for cancer treat-

ment, and a greater understanding of the regulation of

telomerase expression, functions and activity can only serve

to further enlighten the search for safe and effective

treatments.
5. Conclusions and future perspectives
Until fairly recently, the activity of telomerase was thought to

be controlled by limiting access to the telomeres. However,

the collective data illustrate that telomerase recruitment and

activation are separate events. Such a two-step mechanism

is likely to be conserved from yeast to humans. However,

the structural biology and biochemistry underlying the pro-

cess of telomerase activation remains largely unknown and

presents an important area for future research. In many

human cancer cells, telomerase is highly expressed and

recruited indiscriminately to all telomeres. Nevertheless, pro-

cessivity is low, resulting in the maintenance of short
telomeres. As such, both the preferential targeting of short

telomeres and the processivity/activity of telomerase may

be altered in cancer cells. We believe that t-stumps and

altered telomerase regulation, such unique feature of telo-

meres in cancer, would be an ideal target for cancer

therapeutics. Further investigation of telomerase regulation

and action would benefit our understanding of the differ-

ences in telomere homeostasis between cancer and normal

cells, and hopefully lead to the development of effective

and safe anti-cancer treatments.
6. Take home messages
— Telomere function and action of telomerase are largely

conserved between yeasts and mammals.

— The structural biology and biochemistry underlying the

process of telomerase activation remains largely

unknown, but emerging studies indicate evolutionary

conservation of the mechanisms of telomere homeostasis

from yeast to mammals.

— Telomere homeostasis differs between normal cells and

cancer cells.

— The maintenance of short telomeres in cancer cells is

thought to predispose to genomic instability, and indi-

cates that the targeting and processivity of telomerase

may be impaired in cancer.

— Telomeres and telomerase are attractive targets for anti-

cancer therapeutics owing to its uniqueness in cancer

cells, allowing selective targeting of cancer cells whilst

having minimal effects on normal tissue.
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