3 research outputs found

    Cubic bipolar fuzzy VIKOR and ELECTRE-II algorithms for efficient freight transportation in Industry 4.0

    Get PDF
    The theory of cubic bipolar fuzzy sets (CBFSs) is a robust approach for dealing with vagueness and bipolarity in real-life circumstances. This theory provides a hybrid machine learning paradigm that can accurately describe two-sided contrasting features for medical diagnosis. The ELECTRE-II model, which is extensively used, is expanded in this article to include the cubic bipolar fuzzy (CBF) context. In order to produce a comprehensive preference ordering of actions, ELECTRE-II establishes two different forms of embedded outranking relations while taking into account the subjective human judgments. A huge number of applications have been created by its variations under various models, considering the CBF model's greater capacity to deal. For opinions in the adaptive CBF structure with unknown information, the CBF-ELECTRE-II group decision support method is described. With the use of proper CBF aggregation operations, the expert CBF views on each alternative and criterion are compiled in the first step. The approach then constructs weak and strong outranking relations and offers three distinct CBF outranking set kinds ("concordance", "indifferent" and "discordance" sets). Strong and weak outranking graphs serve as a visual depiction of the latter, which is finally studied by a rigorous iterative procedure that yields a preferred system. For these objectives, integrated CBF-VIKOR and CBF-ELECTRE-II techniques are developed for multi-criteria group decision making (MCDGM). Finally, suggested techniques are recommended to determine ranking index of efficient road freight transportation (FRT) in Industry 4.0. The ranking index and optimal decision are also computed with other techniques to demonstrate robustness of proposed MCDGM approach

    Certain Properties of Bipolar Fuzzy Soft Topology Via Q-Neighborhood

    No full text

    Spherical Linear Diophantine Fuzzy Soft Rough Sets with Multi-Criteria Decision Making

    No full text
    Modeling uncertainties with spherical linear Diophantine fuzzy sets (SLDFSs) is a robust approach towards engineering, information management, medicine, multi-criteria decision-making (MCDM) applications. The existing concepts of neutrosophic sets (NSs), picture fuzzy sets (PFSs), and spherical fuzzy sets (SFSs) are strong models for MCDM. Nevertheless, these models have certain limitations for three indexes, satisfaction (membership), dissatisfaction (non-membership), refusal/abstain (indeterminacy) grades. A SLDFS with the use of reference parameters becomes an advanced approach to deal with uncertainties in MCDM and to remove strict limitations of above grades. In this approach the decision makers (DMs) have the freedom for the selection of above three indexes in [0,1]. The addition of reference parameters with three index/grades is a more effective approach to analyze DMs opinion. We discuss the concept of spherical linear Diophantine fuzzy numbers (SLDFNs) and certain properties of SLDFSs and SLDFNs. These concepts are illustrated by examples and graphical representation. Some score functions for comparison of LDFNs are developed. We introduce the novel concepts of spherical linear Diophantine fuzzy soft rough set (SLDFSRS) and spherical linear Diophantine fuzzy soft approximation space. The proposed model of SLDFSRS is a robust hybrid model of SLDFS, soft set, and rough set. We develop new algorithms for MCDM of suitable clean energy technology. We use the concepts of score functions, reduct, and core for the optimal decision. A brief comparative analysis of the proposed approach with some existing techniques is established to indicate the validity, flexibility, and superiority of the suggested MCDM approach
    corecore