14 research outputs found

    Improvement in the Gain of UWB Antenna for GPR Applications by Using Frequency-Selective Surface

    Get PDF
    In this article, high-gain ultra-wideband (UWB) monopole antenna is presented. e UWB monopole antenna is a semicircular- shaped antenna with a semicircular slot at the top side. e bottom plane consists of partial ground with triangular and rectangular slotted structures to improve the impedance bandwidth of the proposed antenna. In order to enhance gain, a 6 × 6 metallic reector (FSS) is placed below the antenna. e performance of the oered design is validated experimentally. e simulated results show resemblance with the measured results. e antenna resonates for the UWB ranging from 3 to 11 GHz. Moreover, the integration of FSS improves the average gain by 4 dB, where peak gain obtained is 8.3 dB across the UWB. In addition, the reported unit cell having dimension of 0.11lambda × 0.11lambda gives wide bandwidth (7.2 GHz) from 3.3 GHz to 10.5 GHz. e performance of the proposed antenna determines its suitability for the modern day wireless UWB and GPR applications.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538

    Simple wideband extended aperture antenna-inspired circular patch for V-band communication systems

    Get PDF
    This article presents the design and realization of compact, geometrically simple, wideband and high gain antenna for V-band communication systems. The antenna is designed by using a conventional circular patch, which is further modified by using another fractal circular patch. Furthermore, the addition of three elliptical shaped patches significantly increases the bandwidth of the antenna. Afterwards, a circular slot is etched from the radiator to improve the radiation pattern of the antenna. The proposed structure comprises of an overall substrate size of 13 × 12 × 0.508 mm3 and designed using Duroid 5880 having very low loss tangent of 0.0009. To verify the presented results, the antenna prototype is fabricated and tested. The comparison among simulated and measured results shows a strong performance. Moreover, the comparison with state of the artwork shows that the antenna offers compact size, wide bandwidth, high gain, and good radiation efficiency. Thus, it makes the proposed antenna a potential candidate for the V-band communication systems.The authors sincerely appreciate the funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant 801538. Also, this work is partially supported by Antenna and Wireless Propagation Group (AWPG); https://sites.google.com/view/awpgrp, and from the Researchers Supporting Project number (RSP-2021/58), King Saud University, Riyadh, Saudi Arabia

    Antennas for 5G and 6G Communications

    No full text
    An antenna is of substantial importance for a communication system as the design of an air interface is mainly reliant on the antenna design. With the significant wireless evolution from 1G to 6G, technologies and network capacities are also evolving to fulfill the promptly growing customer demands. These continually increasing demands have gone concurrently with extensive technological accomplishments of the antenna design community. This chapter discusses the sub-6 GHz and millimeter-wave (mm-wave) fifth-generation (5G) antennas, including antenna arrays, multiple-input, multiple-output (MIMO) technology, beam-steering techniques, metasurfaces, and other techniques to achieve the current and impending fast connectivity. Moreover, the design specifications, research directions, various technologies expected to be involved, and challenges in the design, fabrication, and measurement of the sixth-generation (6G) antennas at the THz band have also been presented. In addition, antenna-in-package (AiP) and antenna-on-chip (AoC) technologies with proper technology solutions have also been discussed

    High-Isolation MIMO Antenna for 5G Millimeter-Wave Communication Systems

    No full text
    The work in this article presents the design and realization of a low-profile, four-port MIMO antenna supporting fifth-generation (5G) wireless applications operating at a millimeter-Wave (mm-Wave) band. Each MIMO antenna is a 2-element array fed with a corporate feeding network, whereas the single antenna is a patch with a bow-tie slot at the center and slits at the edges. The vertical and horizontal slots are incorporated as a Defected Ground Structure (DGS) to optimize the antenna performance. In addition, a slotted zig-zag decoupling structure is etched from edge to edge on the top side to enhance the isolation. Significant isolation (>−40 dB) is achieved between antenna elements by employing spatial and polarization diversity techniques. The proposed antenna covers the 5G mm-Wave band with a −10 dB bandwidth ranging from 27.6–28.6 GHz, whereas the maximum gain attained for the proposed structure is 12.02 dBi. Moreover, the lower correlation values, higher diversity gain, and lower channel capacity loss make it a suitable contender for 5G MIMO applications at the mm-Wave range

    A Conformal Frequency Reconfigurable Antenna with Multiband and Wideband Characteristics

    No full text
    A compact flexible multi-frequency antenna for smart portable and flexible devices is presented. The antenna consists of a coplanar waveguide-fed slotted circular patch connected to a rectangular secondary resonator (stub). A thin low-loss substrate is used for flexibility, and a rectangular stub in the feedline is deployed to attain wide operational bandwidth. A rectangular slot is etched in the middle of the circular patch, and a p-i-n diode is placed at its center. The frequency reconfigurability is achieved through switching the diode that distributes the current by changing the antenna’s electrical length. For the ON state, the antenna operates in the UWB region for −10 dB impedance bandwidth from 2.76 to 8.21 GHz. For the OFF state of the diode, the antenna operates at the ISM band (2.45/5.8 GHz), WLAN band (5.2 GHz), and lower X-band (8 GHz) with a minimum gain of 2.49 dBi and a maximum gain of 5.8 dBi at the 8 GHz band. Moreover, the antenna retains its performance in various bending conditions. The proposed antenna is suitable for modern miniaturized wireless electronic devices such as wearables, health monitoring sensors, mobile Internet devices, and laptops that operate at multiple frequency bands

    Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals

    Get PDF
    This work demonstrates an integrated multiple-input multiple-output (MIMO) antenna solution for Long Term Evolution (LTE) and Millimeter-Wave (mm-wave) 5G wireless communication services. The proposed structure is comprised of a two-element LTE MIMO antenna, and a four-element 5G MIMO configuration with rectangular and circular defects in the ground plane. For experimental validation, the proposed structure is fabricated on a Rogers RO4350B substrate with 0.76 mm thickness. The overall substrate dimensions are 75 mm × 110 mm. The proposed structure is capable of operating at 5.29–6.12 GHz (LTE 46 and 47 bands) and 26–29.5 GHz (5G mm-wave) frequency bands. Additionally, the measured peak gain of 5.13 and 9.53 dB is attained respectively for the microwave and mm-wave antennas. Furthermore, the analysis of the MIMO performance metrics demonstrates good characteristics, and excellent field correlation performance across the operating bands. Furthermore, the analysis of the Specific Absorption Rate (SAR) and Power Density (PD) at the lower frequency band (5.9 GHz) and PD only at mm-Wave frequency band (28 GHz) verifies that the proposed antenna system satisfies the international human safety standards. Therefore, the proposed integrated MIMO antenna configuration ascertains to be a potential contender for the forthcoming communication applications. Naqvi 1OrcID2OrcID,Amjad Iqbal 3,4OrcID,5,*OrcID,Masoud Forsat 6,*OrcID,Seyed Sajad Mirjavadi 6OrcID and1OrcID 1 ACTSENA Research Group, Department of Telecommunication Engineering, 2 Department of Computer and Communication Engineering, Chungbuk National University, Cheongju 28644, Korea 3 Centre for Wireless Technology, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia 4 Department of Electrical Engineering, 6 Department of Mechanical and Industrial Engineering

    “Design and Fabrication of a Printed Tri-Band Antenna for 5G Applications Operating Across Ka-, and V-Band Spectrums

    Get PDF
    In this paper, an umbrella-shaped patch antenna for future millimeter-wave applications for the 5G frequency band is presented. The proposed antenna resonates at multiple frequency bands, i.e., 28 GHz, 38 GHz, and 55 GHz (V-band) that have been globally allocated for 5G communications systems. The proposed antenna is designed using Rogers RT/duroid 5870, with a relative permittivity, loss tangent and thickness of 2.33 mm, 0.0012 mm and 0.79 mm, respectively. The antenna has an overall size of 8 mm × 8 mm which correspond to 0.7 λ × 0.7 λ, where λ is free space wavelength at the lowest resonance. Moreover, the wide bandwidth, high gain and tri band operational mode is achieved by introducing two stubs to the initial design. The antenna prototype was fabricated and validated experimentally. The comparison of the simulated and measured results demonstrates a good correlation. Additionally, the comparative analysis with state of the art work demonstrates that the proposed antenna offers compact size, simple geometrical configuration, wide bandwidth, high gain, and radiation efficiency which makes the proposed antenna a potential candidate for compact smart 5G devices

    4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications

    No full text
    We present a 4-port Multiple-Input-Multiple-Output (MIMO) antenna array operating in the mm-wave band for 5G applications. An identical two-element array excited by the feed network based on a T-junction power combiner/divider is introduced in the reported paper. The array elements are rectangular-shaped slotted patch antennas, while the ground plane is made defected with rectangular, circular, and a zigzag-shaped slotted structure to enhance the radiation characteristics of the antenna. To validate the performance, the MIMO structure is fabricated and measured. The simulated and measured results are in good coherence. The proposed structure can operate in a 25.5–29.6 GHz frequency band supporting the impending mm-wave 5G applications. Moreover, the peak gain attained for the operating frequency band is 8.3 dBi. Additionally, to obtain high isolation between antenna elements, the polarization diversity is employed between the adjacent radiators, resulting in a low Envelope Correlation Coefficient (ECC). Other MIMO performance metrics such as the Channel Capacity Loss (CCL), Mean Effective Gain (MEG), and Diversity gain (DG) of the proposed structure are analyzed, and the results indicate the suitability of the design as a potential contender for imminent mm-wave 5G MIMO applications

    4-port MIMO antenna with defected ground structure for 5G millimeter wave applications

    Get PDF
    We present a 4-port Multiple-Input-Multiple-Output (MIMO) antenna array operating in the mm-wave band for 5G applications. An identical two-element array excited by the feed network based on a T-junction power combiner/divider is introduced in the reported paper. The array elements are rectangular-shaped slotted patch antennas, while the ground plane is made defected with rectangular, circular, and a zigzag-shaped slotted structure to enhance the radiation characteristics of the antenna. To validate the performance, the MIMO structure is fabricated and measured. The simulated and measured results are in good coherence. The proposed structure can operate in a 25.5-29.6 GHz frequency band supporting the impending mm-wave 5G applications. Moreover, the peak gain attained for the operating frequency band is 8.3 dBi. Additionally, to obtain high isolation between antenna elements, the polarization diversity is employed between the adjacent radiators, resulting in a low Envelope Correlation Coefficient (ECC). Other MIMO performance metrics such as the Channel Capacity Loss (CCL), Mean Effective Gain (MEG), and Diversity gain (DG) of the proposed structure are analyzed, and the results indicate the suitability of the design as a potential contender for imminent mm-wave 5G MIMO applications.Funding: This research is funded by the Higher Education Commission of Pakistan Technology development fund (HEC-TDF-67/2017).Scopu

    Design and realization of a frequency reconfigurable antenna with wide, dual, and single-band operations for compact sized wireless applications

    Get PDF
    This article belongs to the Special Issue Ultra-Wideband Microwave/MM-Wave Components and Packaging.This paper presents a compact and simple reconfigurable antenna with wide-band, dual-band, and single-band operating modes. Initially, a co-planar waveguide-fed triangular monopole antenna is obtained with a wide operational frequency band ranging from 4.0 GHz to 7.8 GHz. Then, two additional stubs are connected to the triangular monopole through two p-i-n diodes. By electrically switching these p-i-n diodes ON and OFF, different operating frequency bands can be attained. When turning ON only one diode, the antenna offers dual-band operations of 3.3–4.2 GHz and 5.8–7.2 GHz. Meanwhile, the antenna with single-band operation from 3.3 GHz to 4.2 GHz can be realized when both of the p-i-n diodes are switched to ON states. The proposed compact size antenna with dimensions of 0.27λ0 × 0.16λ0 × 0.017λ0 at the lower operating frequency (3.3 GHz) can be used for several wireless applications such as worldwide interoperability for microwave access (WiMAX), wireless access in the vehicular environment (WAVE), and wireless local area network (WLAN). A comparative analysis with state-of-the-art works exhibits that the presented design possesses advantages of compact size and multiple operating modes.This work is partially supported by Antenna and Wireless Propagation Group (AWPG); https://sites.google.com/view/awpgrp
    corecore