3 research outputs found

    DESIGN AND OPTIMIZATION OF NANOENCAPSULATED BIO COMPOUNDS OF ASPARAGUS RACEMOSUS: BOX BEHNKEN APPROACH

    No full text
    Objective: The current study’s objective is to develop and optimize nanoencapsulated biocompounds of Asparagus racemosus (BCAR) utilizing the ionic gelation process to target the kidney for antiurolithiatic activity. Methods: Nanoencapsulated BCAR was prepared employing the ionic gelation method. Box Behnken Design (BBD) 3-factor, 3-level is used to examine the effects of formulation parameters and to enhance the desired responses. Characterization studies include Fourier transform infrared (FTIR), X-ray diffraction (XRD), particle size, zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) performed to study the quality of optimized nanoparticles. Results: Mathematical equations and response surface plots were used to relate the dependent and independent variables. Diagnostic charts were used to show the varied factor- level permutations. The percentages of entrapment efficiency (% EE) and drug release (% DR) used in evaluation studies of optimized biocompounds of BCAR nanoparticles (OBCARNPs) were determined to be 80.67% and 77.4%, respectively. The Fourier transform infrared (FTIR) results showed that chitosan, sodium tripolyphosphate (NaTPP), and BCAR were compatible. Due to chitosan and NaTPP gelation in the case of OBCBANPs, X-ray diffraction (XRD) analyses have acknowledged the crystalinity. The particle size and zeta potential of the optimized formulation found to be 48.8 nm and 14.1 mV, respectively, indicate the nanoparticles are in the nanorange and possess extreme stability by preventing particle convergence. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies reveal that the optimized formulation nanoparticles are spherical in shape, homogeneous, and have little aggregation. The accelerated stability studies showed that the optimized formulation was stable at different temperatures and relative humidity. Conclusion: The stable optimized formulation was prepared, evaluated, and characterized. BBD is employed to optimize the formulation by minimizing the number of experimental runs and enhancing the desired responses. The optimized formulation further needs to investigate the in vivo studies for antiurolithiatic activity by targeting the kidney

    Heterotaxy syndrome with associated agenesis of dorsal pancreas and polysplenia: A case report

    No full text
    Heterotaxy syndrome is a rare embryological disorder comprising of polysplenia, partial agenesis of dorsal pancreas, malrotation of gut, cardiac and vascular anomalies resulting from failure of development of the usual left–right asymmetry of organs. We report a rare case of heterotaxy syndrome with polysplenia, partial agenesis of dorsal pancreas and malrotation of gut in a 28 year female presenting with subacute intestinal obstruction along with imaging illustrations, brief discussion and thorough review of literature

    Castor Oil: A Promising Source for the Production of Flavor and Fragrance Through Lipase-Mediated Biotransformation

    No full text
    Castor (Ricinus communis; family: Euphorbiaceae) oil extracted from castor seed is a nonedible, nontoxic, yellowish color liquid that has become an essential bioresource material for industrial uses. The castor oil is rich in ricinoleic acid; this is a key precursor of the production of lactones. The presence of a double bond and hydroxyl and carboxylic groups with a long hydrocarbon chain in ricinoleic acid proposes several possibilities for converting it into valuable compounds. γ-Decalactone is an aroma compound having peach-like essence, generally utilized in food industries. Lipase-mediated biotransformation is used to produce γ-decalactone from ricinoleic acid under controlled conditions. Several studies and industrial approaches have explained the genetic and metabolic engineering and bioprocess engineering strategies in the enrichment of aroma compounds, but few studies have been available on the utilization of castor oil as a natural raw material for the synthesis of aroma compounds. As a result, this review draws attention to the importance of castor oil in the production of value-added aroma compounds with their estimated global market prospective. The review gives information about the properties of castor oil and its geographical accessibility and its exploitation as a bio-based resource for the production of various value-added materials. In addition, this review emphasizes the utilization of ricinoleic acid or castor oil as a renewable source for the production of aroma compounds. Though chemical transformation for the production of lactone derivatives is known, the products are chiral mixtures. On the other hand, the lipase-based conversion is enantiospecific, and this product is categorized as nature-identical and considered safe for using in food products
    corecore