6 research outputs found

    Post-COVID-19 complications in home and hospital-based care: A study from Dhaka city, Bangladesh

    Get PDF
    A cross-sectional survey was undertaken to understand the management patterns and post-COVID-19 complications among hospital and home-treated participants. Retrospective information was collected from four COVID-19 dedicated hospitals and four selected community settings. Using probability proportional sampling, 925 participants were selected. Data were collected using a semi-structured questionnaire. Bivariate and multivariate logistic regression analysis and the exact chi-square tests were utilized to analyze the association between the studied variables. A total of 659 participants responded (response rate 70.93%); 375 from hospitals and 284 from communities. About 80% of participants were mild cases, 75% were treated at home, and 65% of hospital-treated participants were referred after home treatment. Participants treated at home-to hospital and directly in the hospital had 1.64 and 3.38 times longer recovery time respectively than what home-based participants had. A significant increasing trend (p < 0.001) of co-morbidities was found among referred and hospital treated participants. Age, level of education, physical exercise, practicing preventive measures, exposure to sunlight, and intake of carbohydrate, additional liquid, food supplements, and avoidance of junk foods were significantly associated with place of treatment. Post-COVID-19 difficulties of all factors were statistically significant for home treatment participants, whilst only depression (p = 0.026), chest pain (p = 0.017), and digestive disorders (p = 0.047) were significant (p < 0.05) for hospital treated participants. The outcomes from this study provide insight into a range of post-COVID-19 difficulties relating to at home and in hospital treatment participants. There are clear differences in the complications experienced, many of which are statistically significant. The health care professionals, the community people and COVID-19 survivors will be benefitted from the study findings, and the policy level people may use the information for designing health education program on post COVID-19 complications

    Feasibility of atrial fibrillation detection from a novel wearable armband device

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the world’s most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. OBJECTIVE: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. METHODS: In our 2-step algorithm, we first calculate the R-R interval variability–based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density Poincaré plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. RESULTS: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. CONCLUSION: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy

    Development and Validation of an Automated Algorithm to Detect Atrial Fibrillation Within Stored Intensive Care Unit Continuous Electrocardiographic Data: Observational Study

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia during critical illness, representing a sepsis-defining cardiac dysfunction associated with adverse outcomes. Large burdens of premature beats and noisy signal during sepsis may pose unique challenges to automated AF detection. OBJECTIVE: The objective of this study is to develop and validate an automated algorithm to accurately identify AF within electronic health care data among critically ill patients with sepsis. METHODS: This is a retrospective cohort study of patients hospitalized with sepsis identified from Medical Information Mart for Intensive Care (MIMIC III) electronic health data with linked electrocardiographic (ECG) telemetry waveforms. Within 3 separate cohorts of 50 patients, we iteratively developed and validated an automated algorithm that identifies ECG signals, removes noise, and identifies irregular rhythm and premature beats in order to identify AF. We compared the automated algorithm to current methods of AF identification in large databases, including ICD-9 (International Classification of Diseases, 9th edition) codes and hourly nurse annotation of heart rhythm. Methods of AF identification were tested against gold-standard manual ECG review. RESULTS: AF detection algorithms that did not differentiate AF from premature atrial and ventricular beats performed modestly, with 76% (95% CI 61%-87%) accuracy. Performance improved (P=.02) with the addition of premature beat detection (validation set accuracy: 94% [95% CI 83%-99%]). Median time between automated and manual detection of AF onset was 30 minutes (25th-75th percentile 0-208 minutes). The accuracy of ICD-9 codes (68%; P=.002 vs automated algorithm) and nurse charting (80%; P=.02 vs algorithm) was lower than that of the automated algorithm. CONCLUSIONS: An automated algorithm using telemetry ECG data can feasibly and accurately detect AF among critically ill patients with sepsis, and represents an improvement in AF detection within large databases

    Feasibility of atrial fibrillation detection from a novel wearable armband device

    No full text
    Background: Atrial fibrillation (AF) is the world’s most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. Objective: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. Methods: In our 2-step algorithm, we first calculate the R-R interval variability–based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density Poincaré plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. Results: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. Conclusion: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    corecore