22 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Hypoxia in Uterine Fibroids: Role in Pathobiology and Therapeutic Opportunities

    No full text
    Uterine fibroids are the most common tumors in females, affecting up to 70% of women worldwide, yet targeted therapeutic options are limited. Oxidative stress has recently surfaced as a key driver of fibroid pathogenesis and provides insights into hypoxia-induced cell transformation, extracellular matrix pathophysiology, hypoxic cell signaling cascades, and uterine biology. Hypoxia drives fibroid tumorigenesis through (1) promoting myometrial stem cell proliferation, (2) causing DNA damage propelling the transformation of stem cells to tumor-initiating cells, and (3) driving excess extracellular matrix (ECM) production. Common fibroid-associated DNA mutations include MED12 mutations, HMGA2 overexpression, and fumarate hydratase loss of function. Evidence suggests an interaction between hypoxia signaling and these mutations. Fibroid development and growth are promoted by hypoxia-triggered cell signaling via various pathways including HIF-1, TGFβ, and Wnt/β-catenin. Fibroid-associated hypoxia persists due to antioxidant imbalance, ECM accumulation, and growth beyond adequate vascular supply. Current clinically available fibroid treatments do not take advantage of hypoxia-targeting therapies. A growing number of pre-clinical and clinical studies identify ROS inhibitors, anti-HIF-1 agents, Wnt/β-catenin inhibition, and TGFβ cascade inhibitors as agents that may reduce fibroid development and growth through targeting hypoxia

    Common Beverage Consumption and Benign Gynecological Conditions

    No full text
    The purpose of this article is to review the effects of four commonly consumed beverage types—sugar-sweetened beverages (SSBs), caffeinated beverages, green tea, and alcohol—on five common benign gynecological conditions: uterine fibroids, endometriosis, polycystic ovary syndrome (PCOS), anovulatory infertility, and primary dysmenorrhea (PD). Here we outline a plethora of research, highlighting studies that demonstrate possible associations between beverage intake and increased risk of certain gynecological conditions—such as SSBs and dysmenorrhea—as well as studies that demonstrate a possible protective effect of beverage against risk of gynecological condition—such as green tea and uterine fibroids. This review aims to help inform the diet choices of those with the aforementioned conditions and give those with uteruses autonomy over their lifestyle decisions

    Effect of Two Years of Doxycycline Treatment on Infrarenal Aortic Neck Diameter

    No full text
    Objective: Endovascular aneurysm repair (EVAR) is a widely used option for patients with suitable vascular anatomy who have a large infrarenal abdominal aortic aneurysm (AAA). Neck diameter is the primary anatomical determinant of EVAR eligibility and device durability. Doxycycline has been proposed to stabilise the proximal neck after EVAR. This study explored doxycycline mediated aortic neck stabilisation in patients with small AAA, monitored by computed tomography over two years. Methods: This was a multicentre prospective randomised clinical trial. Subjects from the Non-Invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA3CT, NCT01756833) were included in this secondary a priori analysis. Female baseline AAA maximum transverse diameter was between 3.5 and 4.5 cm, and male was between 3.5 and 5.0 cm. Subjects were included if they completed pre-enrolment and two year follow up computed tomography (CT) imaging. Proximal aortic neck diameter was measured at the lowest renal artery, and 5, 10, and 15 mm caudal to this point; mean neck diameter was calculated from these values. Unpaired, two tailed parametric t test analysis with post hoc Bonferroni correction was used to detect differences between neck diameters in subjects treated with placebo vs. doxycycline at baseline and two years. Results: One hundred and ninety-seven subjects (171 male, 26 female) were included in the analysis. All patients, regardless of treatment arm, demonstrated larger neck diameter caudally, a slight increase in diameter at all anatomical levels over time, and greater growth caudally. There was no statistically significant difference in infrarenal neck diameter between treatment arms at any anatomical level at any time point, nor mean change in neck diameter over two years. Conclusion: Doxycycline does not demonstrate infrarenal aortic neck growth stabilisation in small AAA followed for two years by thin cut CT imaging using a standardised acquisition protocol and cannot be recommended for mitigation of growth of the aortic neck in patients with untreated small abdominal aortic aneurysms

    A nano-enhanced vaccine for metastatic melanoma immunotherapy

    No full text
    Aim: Despite the huge advancements in cancer therapies and treatments over the past decade, most patients with metastasized melanoma still die from the disease. This poor prognosis largely results from resistance to conventional chemotherapies and other cytotoxic drugs. We have previously identified 6 antigenic peptides derived from melanomas that have proven efficacious for activating CD4+ T cells in clinical trials for melanoma. Our aim was to improve pharmacodynamics, pharmacokinetic and toxicological parameters by individually encapsulating each of the 6 melanoma helper peptides within their own immunogenic nanoliposomes.Methods: We modified these liposomes as necessary to account for differences in the peptides’ chemical properties, resulting in 3 distinct formulations. To further enhance immunogenicity, we also incorporated KDO2, a TLR4 agonist, into the lipid bilayer of all nanoliposome formulations. We then conducted in vivo imaging studies in mice and ex vivo cell studies from 2 patient samples who both strongly expressed one of the identified peptides.Results: We demonstrate that these liposomes, loaded with the different melanoma helper peptides, can be readily mixed together and simultaneously delivered without toxicity in vivo. These liposomes are capable of being diffused to the secondary lymphoid organs very quickly and for at least 6 days. In addition, we show that these immunogenic liposomes enhance immune responses to specific peptides ex vivo.Conclusion: Lipid-based delivery systems, including nanoliposomes and lipid nanoparticles, have now been validated for pharmacological (small molecules, bioactive lipids) and molecular (mRNA, siRNA) therapeutic approaches. However, the utility of these formulations as cancer vaccines, delivering antigenic peptides, has not yet achieved the same degree of commercial success. Here, we describe the novel and successful development of a nanoliposome-based cancer vaccine for melanoma. These vaccines help to circumvent drug resistance by increasing a patient’s T cell response, making them more susceptible to checkpoint blockade therapy

    Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade.

    No full text
    Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies

    Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder

    No full text
    Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging. Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure. Results: Higher PACAP levels were associated with greater EC NDI (β = 0.0099, q = 0.032) and lower EC ODI (β = −0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures. Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD. PACAP was associated with altered entorhinal cortex neurite density in PTSD.PACAP was not associated with altered neurite density in amygdala or hippocampus.PACAP may impact arousal-associated memory circuits. PACAP was associated with altered entorhinal cortex neurite density in PTSD. PACAP was not associated with altered neurite density in amygdala or hippocampus. PACAP may impact arousal-associated memory circuits.</p
    corecore