5 research outputs found
Sensitivity analysis for water quality index (WQI) prediction for Kinta River, Malaysia
Water quality index (WQI) serves as the basis for environment assessment of watercourse in relation to pollution load categorization and designation of classes and beneficial uses as provided by Interim National Water Quality Standards (INWQS) in Malaysia. This index is calculated based on six parameters DO, BOD, COD, pH, NH -NL and SS. This research was need as it will give the preliminary judgement on the importance 3 of each water quality parameter for WQI calculation at the Kinta River, Malaysia. This study revealed the used of sensitivity analysis based on ANN to evaluate the significant of each parameter for WQI determination. Sensitivity analysis was carried out for seven models (ANN-WQI-AP, ANN-WQI-LDO, ANN-WQI-LBOD, ANN-WQI-LCOD, ANN-WQI-LpH and ANN-WQI-LNH -NL) and a model performance criterion (R , RMSE and 3 2 SSE) was used for model performance evaluation. DO, SS and NH -NL were selected as the best input models 3 for WQI prediction. The ANN-WQI-LDO, ANN-WQI-LSS and ANN-WQI-LNH -NL model have R values of 3 2 0.8301, 0.9265 and 0.9369 respectively; RMSE values of 4.888, 3.214 and 2.978 respectively; SSE values of 3106.534, 1343.286 and 1152.902 respectively. The low R2 values and higher RMSE and SSE value compared to the ANN-WQI-AP model suggest the importance of these three parameters significantly affect the fitness and residual measurement of the ANN models in WQI prediction. The result also suggests that water quality of Kinta River was affected by agricultural activities and vicinity animal farm. Moreover the use of less parameter for WQI is much more applicable for our water resource management since its time and cost consuming
Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > CO32−, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl− and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes
Hydrogeochemistry of groundwater from different aquifer in Lower Kelantan Basin, Kelantan, Malaysia
The groundwater geochemistry of Lower Kelantan Basin was evaluated based on major ions characteristic to determine its suitability for drinking, domestic use and irrigation. Groundwater samples from different aquifer layers (shallow, intermediate and deep) were collected and analysed for pH, electrical conductivity (EC), total dissolved solid (TDS), Ca, Mg, Na, K, Cl, SO4, CO3, HCO3, NO3, Fe and Mn. The results show that the shallow groundwater is dominated by Ca-HCO3 and Na-HCO3 while intermediate is dominated by Na-Cl and Na-HCO3, and deep aquifer by Na-HCO3 water facies. The sodium adsorption ratio (SAR) and salinity hazard indicate that the groundwater from shallow and deep aquifer is suitable for irrigation purposes, and part of intermediate aquifer is not suitable for crop irrigation. Groundwater from shallow and deep aquifer is regarded as fresh water and suitable for drinking, domestic and agricultural irrigation use while groundwater from intermediate aquifer is slightly brackish water particularly closed to coastal area
Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > CO32−, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl− and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes