493 research outputs found

    Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations

    Full text link
    We study the onset of patterns in vertically oscillated layers of frictionless dissipative particles. Using both numerical solutions of continuum equations to Navier-Stokes order and molecular dynamics (MD) simulations, we find that standing waves form stripe patterns above a critical acceleration of the cell. Changing the frequency of oscillation of the cell changes the wavelength of the resulting pattern; MD and continuum simulations both yield wavelengths in accord with previous experimental results. The value of the critical acceleration for ordered standing waves is approximately 10% higher in molecular dynamics simulations than in the continuum simulations, and the amplitude of the waves differs significantly between the models. The delay in the onset of order in molecular dynamics simulations and the amplitude of noise below this onset are consistent with the presence of fluctuations which are absent in the continuum theory. The strength of the noise obtained by fit to Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in fluid convection experiments, and is comparable to the noise found in experiments with oscillated granular layers and in recent fluid experiments on fluids near the critical point. Good agreement is found between the mean field value of onset from the Swift-Hohenberg fit and the onset in continuum simulations. Patterns are compared in cells oscillated at two different frequencies in MD; the layer with larger wavelength patterns has less noise than the layer with smaller wavelength patterns.Comment: Published in Physical Review

    Crucial role of sidewalls in velocity distributions in quasi-2D granular gases

    Get PDF
    Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their container are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified, other minor change

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators

    Get PDF
    A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15 g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments and Methods

    Rhombic Patterns: Broken Hexagonal Symmetry

    Get PDF
    Landau-Ginzburg equations derived to conserve two-dimensional spatial symmetries lead to the prediction that rhombic arrays with characteristic angles slightly differ from 60 degrees should form in many systems. Beyond the bifurcation from the uniform state to patterns, rhombic patterns are linearly stable for a band of angles near the 60 degrees angle of regular hexagons. Experiments conducted on a reaction-diffusion system involving a chlorite-iodide-malonic acid reaction yield rhombic patterns in good accord with the theory.Energy Laboratory of the University of HoustonOffice of Naval ResearchU.S. Department of Energy Office of Basic Energy SciencesRobert A. Welch FoundationCenter for Nonlinear Dynamic

    Hexagons, Kinks and Disorder in Oscillated Granular Layers

    Full text link
    Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a parametric wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). Above a critical acceleration, the layer becomes disordered in both space and time.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "myprint" which is the defaul
    • …
    corecore