785 research outputs found

    Dynamic Fracture in Single Crystal Silicon

    Full text link
    We have measured the velocity of a running crack in brittle single crystal silicon as a function of energy flow to the crack tip. The experiments are designed to permit direct comparison with molecular dynamics simulations; therefore the experiments provide an indirect but sensitive test of interatomic potentials. Performing molecular dynamics simulations of brittle crack motion at the atomic scale we find that experiments and simulations disagree showing that interatomic potentials are not yet well understood.Comment: 4 pages, 4 figures, 19 reference

    Localization and extinction of bacterial populations under inhomogeneous growth conditions

    Get PDF
    The transition from localized to systemic spreading of bacteria, viruses and other agents is a fundamental problem that spans medicine, ecology, biology and agriculture science. We have conducted experiments and simulations in a simple one-dimensional system to determine the spreading of bacterial populations that occurs for an inhomogeneous environment under the influence of external convection. Our system consists of a long channel with growth inhibited by uniform UV illumination except in a small ``oasis'', which is shielded from the UV light. To mimic blood flow or other flow past a localized infection, the oasis is moved with a constant velocity through the UV-illuminated ``desert''. The experiments are modeled with a convective reaction-diffusion equation. In both the experiment and model, localized or extinct populations are found to develop, depending on conditions, from an initially localized population. The model also yields states where the population grows everywhere. Further, the model reveals that the transitions between localized, extended, and extinct states are continuous and non-hysteretic. However, it does not capture the oscillations of the localized population that are observed in the experiment.Comment: 11 pages, 7 figure

    Crucial role of sidewalls in velocity distributions in quasi-2D granular gases

    Get PDF
    Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their container are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified, other minor change

    Bridging the ARCH model for finance and nonextensive entropy

    Full text link
    Engle's ARCH algorithm is a generator of stochastic time series for financial returns (and similar quantities) characterized by a time-dependent variance. It involves a memory parameter bb (b=0b=0 corresponds to {\it no memory}), and the noise is currently chosen to be Gaussian. We assume here a generalized noise, namely qnq_n-Gaussian, characterized by an index qnRq_{n} \in {\cal R} (qn=1q_{n}=1 recovers the Gaussian case, and qn>1q_n>1 corresponds to tailed distributions). We then match the second and fourth momenta of the ARCH return distribution with those associated with the qq-Gaussian distribution obtained through optimization of the entropy S_{q}=\frac{% 1-\sum_{i} {p_i}^q}{q-1}, basis of nonextensive statistical mechanics. The outcome is an {\it analytic} distribution for the returns, where an unique qqnq\ge q_n corresponds to each pair (b,qn)(b,q_n) (q=qnq=q_n if b=0 b=0). This distribution is compared with numerical results and appears to be remarkably precise. This system constitutes a simple, low-dimensional, dynamical mechanism which accommodates well within the current nonextensive framework.Comment: 4 pages, 5 figures.Figure 4 fixe

    Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators

    Get PDF
    A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15 g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments and Methods

    Rhombic Patterns: Broken Hexagonal Symmetry

    Get PDF
    Landau-Ginzburg equations derived to conserve two-dimensional spatial symmetries lead to the prediction that rhombic arrays with characteristic angles slightly differ from 60 degrees should form in many systems. Beyond the bifurcation from the uniform state to patterns, rhombic patterns are linearly stable for a band of angles near the 60 degrees angle of regular hexagons. Experiments conducted on a reaction-diffusion system involving a chlorite-iodide-malonic acid reaction yield rhombic patterns in good accord with the theory.Energy Laboratory of the University of HoustonOffice of Naval ResearchU.S. Department of Energy Office of Basic Energy SciencesRobert A. Welch FoundationCenter for Nonlinear Dynamic

    Oscillating Fracture in Rubber

    Full text link
    We have found an oscillating instability of fast-running cracks in thin rubber sheets. A well-defined transition from straight to oscillating cracks occurs as the amount of biaxial strain increases. Measurements of the amplitude and wavelength of the oscillation near the onset of this instability indicate that the instability is a Hopf bifurcation

    Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems

    Full text link
    We examine the non-extensive approach to the statistical mechanics of Hamiltonian systems with H=T+VH=T+V where TT is the classical kinetic energy. Our analysis starts from the basics of the formalism by applying the standard variational method for maximizing the entropy subject to the average energy and normalization constraints. The analytical results show (i) that the non-extensive thermodynamics formalism should be called into question to explain experimental results described by extended exponential distributions exhibiting long tails, i.e. qq-exponentials with q>1q>1, and (ii) that in the thermodynamic limit the theory is only consistent in the range 0q10\leq q\leq1 where the distribution has finite support, thus implying that configurations with e.g. energy above some limit have zero probability, which is at variance with the physics of systems in contact with a heat reservoir. We also discuss the (qq-dependent) thermodynamic temperature and the generalized specific heat.Comment: To appear in EuroPhysics Letter
    corecore