15 research outputs found

    MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: Methods, reliability and descriptive statistics

    Get PDF
    To measure carotid plaque components using MRI and estimate reliability in the population-based Atherosclerosis Risk in Communities (ARIC) study

    Long-term preservation of myocardial energetic in chronic hibernating myocardium

    No full text
    We previously reported that the myocardial energetic state, as defined by the ratio of phosphocreatine to ATP (PCr/ATP), was preserved at baseline (BL) in a swine model of chronic myocardial ischemia with mild reduction of myocardial blood flow (MBF) 10 wk after the placement of an external constrictor on the left anterior descending coronary artery. It remains to be seen whether this stable energetic state is maintained at a longer-term follow-up. Hibernating myocardium (HB) was created in minipigs (n = 7) by the placement of an external constrictor (1.25 mm internal diameter) on the left anterior descending coronary artery. Function was assessed with MRI at regular intervals until 6 mo. At 6 mo, myocardial energetic in the HB was assessed by 31P-magnetic resonance spectrometry and myocardial oxygenation was examined from the deoxymyoglobin signal using 1H-magnetic resonance spectrometry during BL, coronary vasodilation with adenosine, and high cardiac workload with dopamine and dobutamine (DpDb). MBF was measured with radiolabeled microspheres. At BL, systolic thickening fraction was significantly lower in the HB compared with remote region (34.4 ± 9.4 vs. 50.1 ± 10.7, P = 0.006). This was associated with a decreased MBF in the HB compared with the remote region (0.73 ± 0.08 vs. 0.97 ± 0.07 ml·min−1·g, P = 0.03). The HB PCr/ATP at BL was normal. DpDb resulted in a significant increase in rate pressure product, which caused a twofold increase in MBF in the HB and a threefold increase in the remote region. The systolic thickening fraction increased with DpDb, which was significantly higher in the remote region than HB (P < 0.05). The high cardiac workload was associated with a significant reduction in the HB PCr/ATP (P < 0.02), but this response was similar to normal myocardium. Thus HB has stable BL myocardial energetic despite the reduction MBF and regional left ventricular function. More importantly, HB has a reduced contractile reserve but has a similar energetic response to high cardiac workload like normal myocardium

    Applications of magnetic resonance imaging for cardiac stem cell therapy

    No full text
    BACKGROUND: The latest generation of interactive cardiac magnetic resonance (MR) scanners has made cardiac interventions with real-time MRI possible. To date, cardiac MRI has been mostly applied to measure myocardial perfusion, viability, and regional function, but now the application of cardiac MRI can be extended to cardiovascular interventions. The purpose of this article is to illustrate the potential of MRI in stem cell therapy for cardiac restoration. METHODS: We have applied MRI to (1) interactively target myocardial injections with a novel stem cell delivery catheter, and to compare gadolinium/blue dye injections to pathology; (2) assess myocardial perfusion with MR first pass imaging in an infarct model treated with stem cell therapy versus control animals; (3) measure regional functional changes using myocardial tissue tagging in the same animals. RESULTS: We were able to demonstrate the feasibility and safety of myocardial injections under MR fluoroscopy. The intramyocardial distribution of the blue dye at necropsy correlated well with the extent of gadolinium, as detected with a three-dimensional inversion recovery MR pulse sequence for late enhancement immediately after contrast injection. Preliminary results show that myocardial perfusion reserve and regional wall motion improved in the stem-cell-treated group, compared to a control group. CONCLUSIONS: These preliminary results suggest that (1) injections into the LV myocardium can be performed under real-time MRI guidance using a directed catheter approach, and (2) regional myocardial perfusion and function, measured with MRI, both improve after stem cell therapy. This ongoing study demonstrates the potential of MRI for image-guided interventions, combined with detailed evaluation of anatomy, function, perfusion, and viability.status: publishe
    corecore