6,496 research outputs found

    Scaling forces to asteroid surfaces: The role of cohesion

    Full text link
    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure

    A computer-aided telescope pointing system utilizing a video star tracker

    Get PDF
    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics

    X-ray diffraction from shock-loaded polycrystals

    Full text link
    X-ray diffraction was demonstrated from shock-compressed polycrystalline metal on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25 to 125 microns thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, and the beam was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes

    The Radius Distribution of Planets Around Cool Stars

    Get PDF
    We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (Teff<4000T_{\rm eff} <4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R⊕R_\oplus, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ∼\sim3 R⊕R_\oplus implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.Comment: 13 pages, 10 figures, published in Ap

    Friction and wear of human hair fibres

    Get PDF
    An experimental study of the tribological properties of hair fibres is reported, and the effect of surface treatment on the evolution of friction and wear during sliding. Specifically, orthogonally crossed fibre/fibre contacts under a compressive normal load over a series of 10,000 cycle studies are investigated. Reciprocating sliding at a velocity of 0.4 mm/s−1, over a track length of 0.8 mm, was performed at 18oC and 40-50% relative humidity. Hair fibres retaining their natural sebum were studied, as well as those stripped of their sebum via hexane cleaning, and hair fibres conditioned using a commercially available product. Surface topography modifications resulting from wear were imaged using scanning electron microscopy and quantified using white light interferometry. Hair fibres that presented sebum or conditioned product at the fibre/fibre junction exhibited initial coefficients of friction at least 25% lower than those that were cleaned with hexane. Coefficients of friction were observed to depend on the directionality of sliding for hexane cleaned hair fibres after sufficient wear cycles that cuticle lifting was present, typically on the order 1,000 cycles. Cuticle flattening was observed for fibre/fibre junctions exposed to 10 mN compressive normal loads, whereas loads of 100 mN introduced substantial cuticle wear and fibre damage

    Crucial role of sidewalls in velocity distributions in quasi-2D granular gases

    Get PDF
    Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their container are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified, other minor change

    Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Get PDF
    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980

    High frequency sampling of the 1984 spring bloom within the mid-Atlantic Bight: Synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment

    Get PDF
    Moorings of current meters, thermistors, transmissometers, and fluorometers on the mid-Atlantic shelf, south of Long Island, suggest a cumulative seaward export of perhaps 0.35 g C/sq m/day between the 80 and 120 m isobaths during February-April 1984. Such a horizontal loss of algal carbon over the lower third of the water column would be 23 to 78% of the March-April 1984 primary production. This physical carbon loss is similar to daily grazing losses from zooplankton of 32-40% of the algal fixation of carbon. Metabolic demands of the benthos could be met by just the estimated fecal pellet flux, without direct consumption of algal carbon, while bacterioplankton needs could be served by excretory release of dissolved organic matter during photosynthesis. Sediment traps tethered 10 m off the bottom at the 120 m isobath and 50 m above the 500 m isobath caught as much as 0.16 to 0.26 g C /sq m/day during March-April 1984, in reasonable agreement with the flux estimated from the other moored instruments

    Scaling of the Random-Field Ising Model at Zero Temperature

    Full text link
    The exact determination of ground states of small systems is used in a scaling study of the random-field Ising model. While three variants of the model are found to be in the same universality class in 3 dimensions, the Gaussian and bimodal models behave distinctly in 4 dimensions with the latter apparently having a discontinuous jump in the magnetization. A finite-size scaling analysis is presented for this transition.Comment: 14 pages Latex, 4 figure
    • …
    corecore