8,059 research outputs found

    A simulation of synthetic aperture radar imaging of ocean waves

    Get PDF
    A simulation of radar imaging of ocean waves with synthetic aperture techniques is presented. The modelling is simplistic from the oceanographic and electromagnetic viewpoint in order to minimize the computational problems, yet reveal some of the physical problems associated with the imaging of moving ocean waves. The model assumes: (1) The radar illuminates a one-dimensional, one harmonic ocean wave. (2) The scattering is assumed to be governed by geometrical optics. (3) The radar is assumed to be down-looking, with Doppler processing (range processing is suppressed due to the one-dimensional nature of the problem). (4) The beamwidth of the antenna (or integration time) is assumed to be sufficiently narrow to restrict the specular points of the peaks and troughs of the wave. The results show that conventional processing of the image gives familiar results if the ocean waves are stationary. When the ocean wave dispersion relationship is satisfied, the image is smeared due to the motion of the specular points over the integration time. In effect, the image of the ocean is transferred to the near field of the synthetic aperture

    Melting at the Limit of Superheating

    Get PDF
    Theories on superheating-melting mostly involve vibrational and mechanical instabilities, catastrophes of entropy, volume and rigidity, and nucleation-based kinetic models. The maximum achievable superheating is dictated by nucleation process of melt in crystals, which in turn depends on material properties and heating rates. We have established the systematics for maximum superheating by incorporating a dimensionless nucleation barrier parameter and heating rate, with which systematic molecular dynamics simulations and dynamic experiments are consistent. Detailed microscopic investigation with large-scale molecular dynamics simulations of the superheating-melting process, and structure-resolved ultrafast dynamic experiments are necessary to establish the connection between the kinetic limit of superheating and vibrational and mechanical instabilities, and catastrophe theories

    Scaling forces to asteroid surfaces: The role of cohesion

    Full text link
    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure

    A computer-aided telescope pointing system utilizing a video star tracker

    Get PDF
    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics
    corecore