65 research outputs found

    Vascular risk factors, atherosclerosis, cerebral white matter lesions and cerebral perfusion in a population-based study

    Get PDF
    We studied risk factors for cerebral vascular disease (blood pressure and hypertension, factor VIIc, factor VIIIc, fibrinogen), indicators of atherosclerosis (intima-media thickness and plaques in the carotid artery) and cerebral white matter lesions in relation to regional cerebral blood flow (rCBF) in 60 persons (aged 65-85 years) recruited from a population-based study. rCBF was assessed with single-photon emission tomography using technetium-99m d,l-hexamethylpropylene amine oxime (99mTc-HMPAO). Statistical analysis was performed with multiple linear regression with adjustment for age, sex and ventricle-to-brain ratio. A significant positive association was found between systolic and diastolic blood pressure and temporo-parietal rCBF. In analysis with quartiles of the distribution, we found a threshold effect for the relation of low diastolic blood pressure (≤ 60 mmHg) and low temporo-parietal rCBF. Levels of plasma fibrinogen were inversely related to parietal rCBF, with a threshold effect of high fibrinogen levels (> 3.2 g/l) and low rCBF. Increased atherosclerosis was related to low rCBF in all cortical regions, but these associations were not significant. No consistent relation was observed between severity of cerebral white matter lesions and rCBF. Our results may have implications for blood pressure control in the elderly population

    Structure characterization of the central repetitive domain of high molecular weight gluten proteins. II. Characterization in solution and in the dry state

    Get PDF
    The structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins was characterized in solution and in the dry state using HMW proteins Bx6 and Bx7 and a subcloned, bacterially expressed part of the repetitive domain of HMW Dx5. Model studies of the HMW consensus peptides PGQGQQ and GYYPTSPQQ formed the basis for the data analysis. In solution, the repetitive domain contained a continuous nonoverlapping series of both type I and type II β-turns at positions predicted from the model studies; type II β-turns occurred at QPGQ and QQGY sequences and type I β-turns at YPTS and SPQQ. The subcloned part of the HMW Dx5 repetitive domain sometimes migrated as two bands on SDS-PAGE; we present evidence that this may be caused by a single amino acid insertion that disturbs the regular structure of β-turns. The type I β-turns are lost when the protein is dried on a solid surface, probably by conversion to type II β-turns. The homogeneous type II β-turn distribution is compatible with the formation of a β-spiral structure, which provides the protein with elastic properties. The β-turns and thus the β-spiral are stabilized by hydrogen bonds within and between turns. Reformation of this hydrogen bonding network after, e.g., mechanical disruption may be important for the elastic properties of gluten proteins

    Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric

    Get PDF
    Alzheimer's disease (AD) is characterized by deposition of beta-amyloid (Abeta) in diffuse and senile plaques, and variably in vessels. Mutations in the Abeta-encoding region of the amyloid precursor protein (APP) gene are frequently associated with very severe forms of vascular Abeta deposition, sometimes also accompanied by AD pathology. We earlier described a Flemish APP (A692G) mutation causing a form of early-onset AD with a prominent cerebral amyloid angiopathy and unusually large senile plaque cores. The pathogenic basis of Flemish AD is unknown. By image and mass spectrometric Abeta analyses, we demonstrated that in contrast to other familial AD cases with predominant brain Abeta42, Flemish AD patients predominantly deposit Abeta40. On serial histological section analysis we further showed that the neuritic senile plaques in APP692 brains were centered on vessels. Of a total of 2400 senile plaque cores studied from various brain regions from three patients, 68% enclosed a vessel, whereas the remainder were associated with vascular walls. These observations were confirmed by electron

    PISA. The effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute stroke: Protocol for a phase II double-blind randomised placebo-controlled trial [ISRCTN98608690]

    Get PDF
    BACKGROUND: During the first days after stroke, one to two fifths of the patients develop fever or subfebrile temperatures. Body temperature is a strong prognostic factor after stroke. Pharmacological reduction of temperature in patients with acute ischaemic stroke may improve their functional outcome. Previously, we studied the effect of high dose (6 g daily) and low dose (3 g daily) paracetamol (acetaminophen) in a randomised placebo-controlled trial of 75 patients with acute ischemic stroke. In the high-dose paracetamol group, mean body temperature at 12 and 24 hours after start of treatment was 0.4°C lower than in the placebo group. The effect of ibuprofen, another potent antipyretic drug, on body-core temperature in normothermic patients has not been studied. AIM: The aim of the present trial is to study the effects of high-dose paracetamol and ibuprofen on body temperature in patients with acute ischaemic stroke, and to study the safety of these treatments. DESIGN: Seventy-five (3 × 25) patients with acute ischaemic stroke confined to the anterior circulation will be randomised to treatment with either: 400 mg ibuprofen, 1000 mg acetaminophen, or with placebo 6 times daily during 5 days. Body-temperatures will be measured with a rectal electronic thermometer at the start of treatment and after 24 hours. An infrared tympanic thermometer will be used to monitor body temperature at 2-hour intervals during the first 24 hours and at 12-hour intervals thereafter. The primary outcome measure will be rectal temperature at 24 hours after the start of treatment. The study results will be analysed on an intent-to-treat basis, but an on-treatment analysis will also be performed. No formal interim analysis will be carried out

    Loss of DPP6 in neurodegenerative dementia : a genetic player in the dysfunction of neuronal excitability

    Get PDF
    Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frame-shift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel K(v)4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or K(v)4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate

    PAIS: paracetamol (acetaminophen) in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN 74418480]

    Get PDF
    BACKGROUND: In patients with acute stroke, increased body temperature is associated with large lesion volumes, high case fatality, and poor functional outcome. A 1°C increase in body temperature may double the odds of poor outcome. Two randomized double-blind clinical trials in patients with acute ischemic stroke have shown that treatment with a daily dose of 6 g acetaminophen (paracetamol) results in a small but rapid and potentially worthwhile reduction of 0.3°C (95% CI: 0.1–0.5) in body temperature. We set out to test the hypothesis that early antipyretic therapy reduces the risk of death or dependency in patients with acute stroke, even if they are normothermic. METHODS/DESIGN: Paracetamol (Acetaminophen) In Stroke (PAIS) is a randomized, double-blind clinical trial, comparing high-dose acetaminophen with placebo in 2500 patients. Inclusion criteria are a clinical diagnosis of hemorrhagic or ischemic stroke and the possibility to start treatment within 12 hours from onset of symptoms. The study will have a power of 86% to detect an absolute difference of 6% in the risk of death or dependency at three months, and a power of 72% to detect an absolute difference of 5%, at a 5% significance level. DISCUSSION: This is a simple trial, with a drug that only has a small effect on body temperature in normothermic patients. However, when lowering body temperature with acetaminophen does have the expected effectiveness, 20 patients will have to be treated to prevent dependency or death in one

    Small Vessel Ischemic Disease of the Brain and Brain Metastases in Lung Cancer Patients

    Get PDF
    Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID) of the brain is protective against the development of brain metastases in lung cancer patients.A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8%) had evidence of brain metastases at presentation and 345 (66.0%) had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001). In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001). The grade of SVID was higher in those without brain metastases.These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by <i>HLA-DRB1*04</i> subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.</p
    • …
    corecore