161 research outputs found

    Of Mice and Men and the Search for an Alzheimer's Disease Treatment

    Get PDF
    Translational Vision and Neuroscience Research PanelAlzheimer's disease is a common affliction that disrupts the lives of millions and costs the country hundreds of millions of dollars. The federal government, state governments, philanthropic foundations, and industry have all committed resources to solving the Alzheimer's disease problem. Clinical and basic science investigators with a wide range of backgrounds have dedicated themselves to this disease. This talk will review the current state of Alzheimer's disease research and discuss where we stand in terms of a cure. This talk will try to predict where Alzheimer's disease research will go in the near future by considering where it's been in the recent past

    Mutations in the Amyloid-β Protein Precursor Reduce Mitochondrial Function and Alter Gene Expression Independent of 42-Residue Amyloid-β Peptide

    Get PDF
    Background:Dominant missense mutations in the amyloid-β protein precursor (AβPP) cause early-onset familial Alzheimer’s disease (FAD) and are associated with changes in the production or properties of the amyloid-β peptide (Aβ), particularly of the 42-residue variant (Aβ42) that deposits in the Alzheimer’s disease (AD) brain. Recent findings, however, show that FAD mutations in AβPP also lead to increased production of longer Aβ variants of 45–49 residues in length. Objective:We aimed to test neurotoxicity of Aβ42 vis-á-vis longer variants, focusing specifically on mitochondrial function, as dysfunctional mitochondria are implicated in the pathogenesis of AD. Methods:We generated SH-SY5Y human neuroblastoma cells stably expressing AβPP mutations that lead to increased production of long Aβ peptides with or without Aβ42. These AβPP-expressing cells were tested for oxygen consumption rates (OCR) under different conditions designed to interrogate mitochondrial function. These cell lines were also examined for expression of genes important for mitochondrial or neuronal structure and function. Results:The mutant AβPP-expressing cells showed decreased basal OCRs as well as decreased OCRs associated with mitochondrial ATP production, even more so in the absence of Aβ42 production. Moreover, mutant AβPP-expressing cells producing longer forms of Aβ displayed altered expression of certain mitochondrial- and neuronal-associated genes, whether or not Aβ42 was produced. Conclusion:These findings suggest that mutant AβPP can cause mitochondrial dysfunction that is associated with long Aβ but not with Aβ42

    Nonobese Male Patients with Alzheimer’s Disease Are Vulnerable to Decrease in Plasma Leptin

    Get PDF
    Background:Metabolic dysfunction links to cognitive deficits in Alzheimer’s disease (AD). Leptin is an anti-obesity hormone that modulates energy homeostasis and memory function. Although leptin deregulation is implicated in mouse models of AD-like brain pathology, clinical studies have shown inconsistent results regarding an association of leptin with the development of this neurodegenerative disorder. Objective:We investigated the changes of plasma leptin and the correlation of sex-stratified circulating leptin with cognitive performance, AD-related biological markers, and metabolic status in patients with AD and cognitively unimpaired (CU) counterparts. Methods:We used nonobese AD patients and CU controls in a University of Kansas Medical Center (KUMC) cohort. Plasma leptin levels, circulating AD-related molecules and metabolic profiles were examined and analyzed. Results:In contrast to unchanged circulating leptin in females, male patients exhibited decreased plasma leptin levels compared with male CU counterparts. Moreover, plasma leptin showed no correlation with cognitive performance and AD blood biomarkers in patients with either sex. Of note, females but not males demonstrated an association of plasma leptin with body mass index, high density lipoprotein-cholesterol and its ratio with total cholesterol and triglycerides. Conclusion:Our findings suggest that leptin deficiency is associated with nonobese male AD patients, supporting systemic dysmetabolism in the development of this neurodegenerative disorder in certain populations. Although plasma leptin may have limited capacity to reflect disease severity or progression, future mechanistic studies on the regulation of leptin in nonobese patients with AD would deepen our understanding of the sex-related disparity of AD etiopathogenesis

    Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline

    Get PDF
    Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as “acyl-ghrelin”) marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory

    O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4

    Get PDF
    BackgroundAccumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimer’s disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2α results in the translation of ATF4.MethodsWe used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses.ResultsWe show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimer’s Disease mice model. The same results are seen in a human in vitro model of AD.ConclusionTogether, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt

    Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease

    Get PDF
    AbstractThe dopaminergic neurotoxin N-methyl,4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) causes a syndrome in primates and humans which mimics Parkinson's disease (PD) in clinical, pathological, and biochemical findings, including diminished activity of complex I in the mitochondrial electron transport chain. Reduced complex I activity is found in sporadic PD and can be transferred through mitochondrial DNA, suggesting a mitochondrial genetic etiology. We now show that MPTP treatment of mice and N-methylpyridinium (MPP+) exposure of human SH-SY5Y neuroblastoma cells increases oxygen free radical production and antioxidant enzyme activities. Cybrid cells created by transfer of PD mitochondria exhibit similar characteristics; however, PD cybrids' antioxidant enzyme activities are not further increased by MPP+ exposure, as are the activities in control cybrids. PD mitochondrial cybrids are subject to metabolic and oxidative stresses similar to MPTP parkinsonism and provide a model to determine mechanisms of oxidative damage and cell death in PD
    corecore