56 research outputs found

    Deducing Receptor Signaling Parameters from In Vivo Analysis: LuxN/AI-1 Quorum Sensing in Vibrio harveyi

    Get PDF
    SummaryQuorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. LuxN, a nine-transmembrane domain protein from Vibrio harveyi, is the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN and discovered LuxN mutants that confer both decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for occupying its kinase and phosphatase states. To understand receptor activation and to characterize the pathway signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior and, more broadly, that signaling parameters can be deduced from in vivo data

    Prediction by Promoter Logic in Bacterial Quorum Sensing

    Get PDF
    Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR – its measured activity as a function of LuxI and LuxR levels – contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype

    Involvement of SenC in Assembly of Cytochrome c Oxidase in Rhodobacter capsulatus

    No full text
    SenC, a Sco1 homolog found in the purple photosynthetic bacteria, has been implicated in affecting photosynthesis and respiratory gene expression, as well as assembly of cytochrome c oxidase. In this study, we show that SenC from Rhodobacter capsulatus is involved in the assembly of a fully functional cbb(3)-type cytochrome c oxidase, as revealed by decreased cytochrome c oxidase activity in a senC mutant. We also show that a putative copper-binding site in SenC is required for activity and that a SenC deletion phenotype can be rescued by the addition of exogenous copper to the growth medium. In addition, we demonstrate that a SenC mutation has an indirect effect on gene expression caused by a reduction in cytochrome c oxidase activity. A model is proposed whereby a reduction in cytochrome c oxidase activity impedes the flow of electrons through the respiratory pathway, thereby affecting the oxidation/reduction state of the ubiquinone pool, leading to alterations of photosystem and respiratory gene expression

    RegB/RegA, a Highly Conserved Redox-Responding Global Two-Component Regulatory System

    No full text
    The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species

    In Brief

    No full text

    A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity

    No full text
    Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. © 2009 Elsevier Inc. All rights reserved

    Signal transduction by the global regulator RegB is mediated by a redox-active cysteine

    No full text
    All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB–RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel ‘redox-box’ that is present in sensor kinases from diverse species of bacteria

    Redox and light regulation of gene expression in photosynthetic prokaryotes.

    No full text
    All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well-defined set of red- and blue-light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus. This species uses the global two-component signal transduction cascade, RegB and RegA, to anaerobically de-repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue-light absorbing anti-repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long-lived photocycle that is initiated by blue-light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed
    corecore