8 research outputs found

    Mnemonic Mechanisms for Making Memories

    Get PDF
    In many classes, students are faced with the daunting task of remembering a lot of terms or structures in a relatively short period of time. Though there is much to memorize, students may not be aware of the many mnemonic mechanisms that can help them make quick and lasting memories. This article describes three such mechanisms: word associations, visual images, and stories. Examples of how these mechanisms can be applied, either individually or in combination, are provided in the context of teaching human anatomy. Whether used by teacher or student, these mechanisms can be incorporated into a class, providing fun and effective ways to both teach and learn

    HLA-G 14bp Polymorphism in Autism

    Get PDF
    Autism Spectrum Disorder (ASD) is a neurodevelopment disorder characterized by deficits in communicative and social behaviors (Meltzer, 2017) . As of 2012 the CDC reported that 1 of 68 children born in the U.S. have ASD (Christensen, 2016). The immune systems of mother and child can be important in ASD. A signaling molecule, HLA-G, helps regulate maternal natural killer cell interaction with the fetus. A defect in HLA-G could increase NK cell activity, leading to abnormal neurodevelopment in the fetus (Carosella, 2008). Our study focuses on a 14 base pair insertion/deletion found in the HLA-G gene of autistic subjects and their mothers, previously examined in an Italian population by Guerini (2014). We are also expanding to look at HLA-G and intellectual disability (ID) in ASD. HLA-DRB1, another gene in the HLA region of chromosome 6, has been linked to ASD and impaired ID (IQ\u3c80, Wang, 2013)

    Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Get PDF
    The “common variant—common disease” hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the “common variant—common disease” hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over control subjects. And, more importantly there is a 12% increase in activating KIR genes and their cognate HLA alleles over control populations (Torres et al., 2012a). These data suggest the interaction of HLA ligand/KIR receptor pairs encoded on two different chromosomes is more significant as a ligand/receptor complex than separately in autism

    C4B null alleles are not associated with genetic polymorphisms in the adjacent gene CYP21A2 in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research indicates that the etiology of autism has a strong genetic component, yet so far the search for genes that contribute to the disorder, including several whole genome scans, has led to few consistent findings. However, three studies indicate that the complement <it>C4B </it>gene null allele (i.e. the missing or nonfunctional <it>C4B </it>gene) is significantly more frequent in individuals with autism. Due to the close proximity of the <it>CYP21A2 </it>gene to the <it>C4B </it>locus (3 kb) it was decided to examine samples from autistic subjects, including many with known <it>C4B </it>null alleles for common <it>CYP21A2 </it>mutations.</p> <p>Methods</p> <p>Samples from subjects diagnosed with autism and non-autistic controls (controls) previously typed for <it>C4B </it>null alleles were studied. Allele specific polymerase chain reaction (PCR) methods were used to determine 8 of the most common <it>CYP21A2 </it>genetic mutations, known to completely or partially inhibit 21-hydroxylase, the enzyme encoded by the <it>CYP21A2 </it>gene.</p> <p>Results</p> <p>Although the combined autism and control study subjects had 50 <it>C4B </it>null alleles only 15 <it>CYP21A2 </it>mutations were detected in over 2250 genotypes. Eight mutations were detected in the autistic samples and 7 in the controls. The frequency of <it>CYP21A2 </it>mutations was similar between the autism and control samples. Only one individual (autistic) carried a chromosome containing both <it>C4B </it>null allele and <it>CYP21A2 </it>mutations.</p
    corecore