331 research outputs found

    Reversible Data Perturbation Techniques for Multi-level Privacy-preserving Data Publication

    Get PDF
    The amount of digital data generated in the Big Data age is increasingly rapidly. Privacy-preserving data publishing techniques based on differential privacy through data perturbation provide a safe release of datasets such that sensitive information present in the dataset cannot be inferred from the published data. Existing privacy-preserving data publishing solutions have focused on publishing a single snapshot of the data with the assumption that all users of the data share the same level of privilege and access the data with a fixed privacy level. Thus, such schemes do not directly support data release in cases when data users have different levels of access on the published data. While a straight-forward approach of releasing a separate snapshot of the data for each possible data access level can allow multi-level access, it can result in a higher storage cost requiring separate storage space for each instance of the published data. In this paper, we develop a set of reversible data perturbation techniques for large bipartite association graphs that use perturbation keys to control the sequential generation of multiple snapshots of the data to offer multi-level access based on privacy levels. The proposed schemes enable multi-level data privacy, allowing selective de-perturbation of the published data when suitable access credentials are provided. We evaluate the techniques through extensive experiments on a large real-world association graph dataset and our experiments show that the proposed techniques are efficient, scalable and effectively support multi-level data privacy on the published data

    In vivo tau pathology is associated with synaptic loss and altered synaptic function

    Get PDF
    BACKGROUND: The mechanism of synaptic loss in Alzheimer’s disease is poorly understood and may be associated with tau pathology. In this combined positron emission tomography (PET) and magnetoencephalography (MEG) study, we aimed to investigate spatial associations between regional tau pathology ([{18}^F]flortaucipir PET), synaptic density (synaptic vesicle 2A [11C]UCB-J PET) and synaptic function (MEG) in Alzheimer’s disease. METHODS: Seven amyloid-positive Alzheimer’s disease subjects from the Amsterdam Dementia Cohort underwent dynamic 130-minV [{18}^F]flortaucipir PET, dynamic 60-min [{11}^C]UCB-J PET with arterial sampling and 2 × 5-min resting-state MEG measurement. [{18^}F]flortaucipir- and [{11}^C]UCB-J-specific binding (binding potential, BPND) and MEG spectral measures (relative delta, theta and alpha power; broadband power; and peak frequency) were assessed in cortical brain regions of interest. Associations between regional [{18}^F]flortaucipir BPND, [{11}^C]UCB-J BP_{ND} and MEG spectral measures were assessed using Spearman correlations and generalized estimating equation models. RESULTS: Across subjects, higher regional [{18}^F]flortaucipir uptake was associated with lower [{11}^C]UCB-J uptake. Within subjects, the association between [{11}^C]UCB-J and [{18}^F]flortaucipir depended on within-subject neocortical tau load; negative associations were observed when neocortical tau load was high, gradually changing into opposite patterns with decreasing neocortical tau burden. Both higher [{18}^F]flortaucipir and lower [{11}^C]UCB-J uptake were associated with altered synaptic function, indicative of slowing of oscillatory activity, most pronounced in the occipital lobe. CONCLUSIONS: These results indicate that in Alzheimer’s disease, tau pathology is closely associated with reduced synaptic density and synaptic dysfunction

    An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence

    Get PDF
    ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATR in vitro. All three can also independently activate Mec1ATR in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development

    The in vivo properties of STX243: a potent angiogenesis inhibitor in breast cancer

    Get PDF
    The steroidal-based drug 2-ethyloestradiol-3,17-O,O-bis-sulphamate (STX243) has been developed as a potent antiangiogenic and antitumour compound. The objective of this study was to ascertain whether STX243 is more active in vivo than the clinically relevant drug 2-methoxyoestradiol (2-MeOE2) and the structurally similar compound 2-MeOE2-3,17-O,O-bis-sulphamate (STX140). The tumour growth inhibition efficacy, antiangiogenic potential and pharmacokinetics of STX243 were examined using four in vivo models. Both STX243 and STX140 were capable of retarding the growth of MDA-MB-231 xenograft tumours (72 and 63%, respectively), whereas no inhibition was observed for animals treated with 2-MeOE2. Further tumour inhibition studies showed that STX243 was also active against MCF-7 paclitaxel-resistant tumours. Using a Matrigel plug-based model, in vivo angiogenesis was restricted with STX243 and STX140 (50 and 72%, respectively, using a 10 mg kgβˆ’1 oral dose), thereby showing the antiangiogenic activity of both compounds. The pharmacokinetics of STX243 were examined at two different doses using adult female rats. The compound was orally bioavailable (31% after a single 10 mg kgβˆ’1 dose) and resistant to metabolism. These results show that STX243 is a potent in vivo drug and could be clinically effective at treating a number of oncological conditions

    Diffusion of Myosin V on Microtubules: A Fine-Tuned Interaction for Which E-Hooks Are Dispensable

    Get PDF
    Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes

    Differential Regulation of the PGC Family of Genes in a Mouse Model of Staphylococcus aureus Sepsis

    Get PDF
    The PGC family of transcriptional co-activators (PGC-1Ξ± [Ppargc1a], PGC-1Ξ² [Ppargc1b], and PRC [Pprc]) coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2βˆ’/βˆ’ and TLR4βˆ’/βˆ’) and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h) in WT mice, but the expression of both genes was concordantly dysregulated in TLR2βˆ’/βˆ’ mice (no increase at 6 h) and in TLR4βˆ’/βˆ’ mice (amplified at 6 h). However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2βˆ’/βˆ’, and TLR4βˆ’/βˆ’). In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2βˆ’/βˆ’ mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2βˆ’/βˆ’ but not in WT or TLR4βˆ’/βˆ’ mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy
    • …
    corecore