119 research outputs found

    Dimensional Changes in Dental Stone and Plaster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66786/2/10.1177_00220345500290060601.pd

    Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    Get PDF
    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design

    Challenges for room temperature operation of electrically pumped GeSn lasers

    Get PDF
    Recent demonstrations of room-temperature lasing in optically pumped GeSn show promise for future CMOS compatible lasers for Si-photonics applications. However, challenges remain for electrically pumped devices. Investigation of the processes that limit device performance is therefore vital in aiding the production of future commercial devices. In this work, a combined experimental and modelling approach is utilised to explore the dominant loss processes in current devices. By manipulating the band structure of functioning devices using high hydrostatic pressure techniques at low temperature, the dominant carrier recombination pathways are identifed. This reveals that 93±5% of the threshold current is attributable to defect-related recombination at a temperature, T = 85 K. Furthermore, carrier occupation of L-valley states (carrier leakage) is responsible for 1.1± 0.3% of the threshold current, but this sharply increases to 50% with a decrease of just 30 meV in the L-r separation energy. This indicates that thermal broadening of a similar order may reproduce these adverse efects, limiting device performance at higher temperatures. Temperature dependent calculations show that carrier occupation of indirect valley L-states strongly afects the transparency carrier density and is therefore very sensitive to the Sn composition, leading to an efective operational temperature range for given Sn compositions and strain values. Recommendations for future device designs are proposed based on band structure and growth optimisations

    Spatial Cloaking Revisited: Distinguishing Information Leakage from Anonymity

    Get PDF
    Abstract. Location-based services (LBS) are receiving increasing popularity as they provide convenience to mobile users with on-demand information. The use of these services, however, poses privacy issues as the user locations and queries are exposed to untrusted LBSs. Spatial cloaking techniques provide privacy in the form of k-anonymity; i.e., they guarantee that the (location of the) querying user u is indistinguishable from at least k-1 others, where k is a parameter specified by u at query time. To achieve this, they form a group of k users, including u, and forward their minimum bounding rectangle (termed anonymizing spatial region, ASR) to the LBS. The rationale behind sending an ASR instead of the distinct k locations is that exact user positions (querying or not) should not be disclosed to the LBS. This results in large ASRs with considerable dead-space, and leads to unnecessary performance degradation. Additionally, there is no guarantee regarding the amount of location information that is actually revealed to the LBS. In this paper, we introduce the concept of information leakage in spatial cloaking. We provide measures of this leakage, and show how we can trade it for better performance in a tunable manner. The proposed methodology directly applies to centralized and decentralized cloaking models, and is readily deployable on existing systems.

    Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer

    Get PDF
    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. Although it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically engineered mouse line lacking functional Muc4 (Muc4 ko), and then crossed these animals with the NDL (Neu DeLetion mutant) model of ErbB2-induced mammary tumorigenesis. We observed that Muc4 ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4 ko /NDL female mice exhibit similar latencies and growth rates as Muc4 wt /NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4 ko /NDL mice. Interestingly, histological analysis of lung lesions from Muc4 ko /NDL mice revealed a reduced association of disseminated cells with platelets and white blood cells. Moreover, isolated cells derived from Muc4 ko /NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4 wt /NDL cells than Muc4 ko /NDL cells. Together, our observations suggest that Muc4 may facilitate metastasis by promoting the association of circulating tumor cells with blood cells to augment tumor cell survival in circulation

    On the Optimal Placement of Mix Zones

    Get PDF
    In mobile wireless networks, third parties can track the location of mobile nodes by monitoring the pseudonyms used for identification. A frequently proposed solution to protect the location privacy of mobile nodes suggests to change pseudonyms in regions called mix zones. In this paper, we propose a novel metric based on the mobility profiles of mobile nodes to evaluate the mixing effectiveness of possible mix zone locations. Then, as the location privacy achieved with mix zones depends on their placement in the network, we analyze the optimal placement of mix zones with combinatorial optimization techniques. The proposed algorithm maximizes the achieved location privacy in the system and takes into account the cost on mobile nodes induced by mix zones. By means of simulations, we show that the placement recommended by our algorithm significantly reduces the tracking success by the adversary

    Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors

    Get PDF
    We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p-i-n structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.© 2012 TMS
    corecore