108 research outputs found

    Cancer Stem Cells in Oral Cavity Squamous Cell Carcinoma: A Review

    Get PDF
    Cancer stem cells (CSCs) have been identified in oral cavity squamous cell carcinoma (OCSCC). CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells and cancer cells that drive tumor growth. Studies of many cancer types including OCSCC have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple CSC subtypes within OCSCC, making investigation reliant on the use of multiple markers. This review examines the current knowledge in CSC markers OCT4, SOX2, NANOG, ALDH1, phosphorylated STAT3, CD44, CD24, CD133, and Musashi-1, specifically focusing on their use and validity in OCSCC CSC research and how they may be organized into the CSC hierarchy. OCSCC CSCs also express components of the renin–angiotensin system (RAS), which suggests CSCs may be novel therapeutic targets by modulation of the RAS using existing medications

    Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Get PDF
    BACKGROUND: Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. AIM: This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1) and human glossal squamous cell carcinoma cell line (SCC25). METHODS: HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. RESULTS: HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p < 0.001), and dysregulation of genes TRAIL, BIRC4, CDK6, Cyclin G2 and CDC6 in SCC25. CONCLUSION: We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control

    Management of Orbital and Periorbital Venous Malformation

    Get PDF
    BackgroundTo review our management of common venous malformation (VM) affecting the orbit and/or periorbital area.MethodsConsecutive patients with orbital and/or periorbital VM were identified from our vascular anomalies database. Demographic details of the patients, anatomic site(s) affected, symptoms and signs, presence of a family history of VM, and types of treatment(s) were collected, supplemented by chart review.ResultsA total of 24 patients’ age 1–68 (mean, 30) years with orbital and/or periorbital VM presented with cosmetic concerns (n = 17, 71%), distensibility (n = 15, 63%), pain (n = 9, 38%), diplopia (n = 4, 17%), and spontaneous thrombosis (n = 1, 8%). The VM caused globe dystopia (n = 13, 54%), enophthalmos (n = 6, 25%), proptosis (n = 3, 12%), exotropia (n = 3, 12%), and pseudoptosis with visual obstruction (n = 3, 13%). A total of 11 (46%) patients were managed conservatively. 13 (54%) patients underwent active treatment. Ethanol sclerotherapy (ES) was performed in six patients with extensive facial VM associated with orbital/periorbital involvement, resulting in symptomatic improvement in five patients, one of whom developed skin necrosis and another patient developed reduced infraorbital nerve sensation. Surgery was performed for localized lesion (n = 3, 23%), for extensive lesions (n = 4, 31%) and as an adjunct to ES (n = 6, 46%) resulting in symptomatic improvement in all patients. One patient required correction of lower lid ectropion.ConclusionOrbital and/or periorbital VMs are heterogeneous, and management needs to be individualized. Surgery is used for localized lesions aiming for complete excision, as a debulking procedure for extensive orbital/periorbital VM when ES was not possible, or following ES for extensive facial VM with orbital and/or periorbital involvement

    Expression of Embryonic Stem Cell Markers on the Microvessels of WHO Grade I Meningioma

    Get PDF
    Aim: The presence of cells within meningioma (MG) that express embryonic stem cell (ESC) markers has been previously reported. However, the precise location of these cells has yet to be determined.Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on 11 WHO grade I MG tissue samples for the expression of the ESC markers OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence (IF) IHC staining was performed to investigate the localization of each of these ESC markers. NanoString and colorimetric in situ hybridization (CISH) mRNA expression analyses were performed on six snap-frozen MG tissue samples to confirm transcriptional activation of these proteins, respectively.Results: DAB IHC staining demonstrated expression of OCT4, NANOG, SOX2, KLF4, and c-MYC within all 11 MG tissue samples. IF IHC staining demonstrated the expression of the ESC markers OCT4, NANOG, SOX2, KLF4, and c-MYC on both the endothelial and pericyte layers of the microvessels. NanoString and CISH mRNA analyses confirmed transcription activation of these ESC markers.Conclusion: This novel finding of the expression of all aforementioned ESC markers in WHO grade I MG infers the presence of a putative stem cells population which may give rise to MG

    Expression of Components of the Renin-Angiotensin System by the Putative Stem Cell Population Within WHO Grade I Meningioma

    Get PDF
    Aim: We have recently demonstrated a putative stem cell population within WHO grade I meningioma (MG) that expressed embryonic stem cell (ESC) markers OCT4, NANOG, SOX2, KLF4 and c-MYC, localized to the endothelial and pericyte layers of the microvessels. There is increasing recognition that the renin-angiotensin system (RAS) plays a critical role in stem cell biology and tumorigenesis. This study investigated the expression of components of the RAS: pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2) on the putative stem cell population on the microvessels of WHO grade I MG.Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on WHO grade I MG tissue samples from 11 patients for PRR, ACE, ATIIR1, and ATIIR2. Two of the MG samples subjected to DAB IHC staining underwent immunofluorescence (IF) IHC staining to investigate co-expression of each of these components of the RAS in using combinations of CD34 and ESC marker SOX2 or OCT4. NanoString mRNA expression analysis and Western blotting (WB), were performed on six snap-frozen MG tissue samples to confirm mRNA and protein expression of these proteins, respectively.Results: DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1, and ATIIR2 within all 11 MG tissue samples. WB and NanoString mRNA analyses, confirmed protein and mRNA expression of these proteins, respectively. IF IHC staining showed PRR, ATIIR1 and ATIIR2 were localized to the OCT4+ and SOX2+ endothelium and the pericyte layer of MG while ACE was localized to the OCT4+ endothelium of the microvesels.Conclusion: The novel finding of the expression of PRR, ACE, ATIIR1, and ATIIR2 on the putative stem cell population on the microvessels of WHO grade I MG, suggests that these stem cells may be a potential therapeutic target by manipulation of the RAS

    Expression of Components of the Renin-Angiotensin System in Pyogenic Granuloma

    Get PDF
    Background: There is a growing body of research demonstrating expression of the renin-angiotensin system (RAS) by a putative embryonic stem cell (ESC)-like population within vascular anomalies. This study investigated the expression of components of the RAS in relation to the putative ESC-like population within pyogenic granuloma (PG) that we have recently reported.Methods: PG samples from 14 patients were analyzed for the expression of components of the RAS: pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2), using 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining. Immunofluorescence (IF) IHC staining was performed to localize these proteins on four of the PG samples. RT-qPCR was performed on two snap-frozen PG samples. Western blotting (WB) was performed on one snap-frozen PG sample and two PG-derived primary cell lines.Results: DAB IHC staining demonstrated the expression of ACE, PRR, ATIIR1, and ATIIR2 in all 14 PG tissue samples. RT-qPCR analysis confirmed abundant mRNA transcripts for PRR, ACE, AIITR1 and ATIIR2, relative to the housekeeping gene. WB confirmed the presence of PRR, ATIIR1, and ACE in the PG tissue sample, and PRR and ATIIR1, in the PG-derived primary cell lines. IF IHC staining demonstrated the expression of PRR, ACE, ATIIR1 on the primitive population that expressed NANOG and SOX2 on the ERG+ endothelium of the microvessels within PG.Conclusion: We have demonstrated the expression of PRR, ACE, and ATIIR1 by the putative the ESC-like population within PG

    Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer.

    Get PDF
    BACKGROUND Histone acetylation/deacetylase process is one of the most studied epigenetic modifications. Histone deacetylase inhibitors (HDACis) have shown clinical benefits in haematological malignancies but failed in solid tumours due to the lack of biomarker-driven stratification. METHODS We perform integrative pharmaco-transcriptomic analysis by correlating drug response profiles of five pan-HDACis with transcriptomes of solid cancer cell lines (n=659) to systematically identify generalizable gene signatures associated with HDACis sensitivity and resistance. The established signatures are then applied to identify cancer subtypes that are potentially sensitive or resistant to HDACis, and drugs that enhance the efficacy of HDACis. Finally, the reproductivity of the established HDACis signatures is evaluated by multiple independent drug response datasets and experimental assays. FINDINGS We successfully delineate generalizable gene signatures predicting sensitivity (containing 46 genes) and resistance (containing 53 genes) to all five HDACis, with their reproductivity confirmed by multiple external sources and independent internal assays. Using the gene signatures, we identify low-grade glioma harbouring isocitrate dehydrogenase 1/2 (IDH1/2) mutation and non-YAP1-driven subsets of small-cell lung cancer (SCLC) that particularly benefit from HDACis monotherapy. Further, based on the resistance gene signature, we identify clinically-approved Dasatinib as a synthetic lethal drug with HDACi, synergizing in inducing apoptosis and reactive oxygen species on a panel of SCLC. Finally, Dasatinib significantly enhances the therapeutic efficacy of Vorinostat in SCLC xenografts. INTERPRETATION Our work establishes robust gene signatures predicting HDACis sensitivity/resistance in solid cancer and uncovers combined Dasatinib/HDACi as a synthetic lethal combination therapy for SCLC

    Expression of Cathepsins B, D, and G in WHO Grade I Meningioma

    Get PDF
    Aim: We have recently demonstrated the presence of putative tumor stem cells (TSCs) in World Health Organization (WHO) grade I meningioma (MG) localized to the microvessels, which expresses components of the renin-angiotensin system (RAS). The RAS is known to be dysregulated and promotes tumorigenesis in many cancer types, including glioblastoma. Cathepsins B, D, and G are isoenzymes that catalyze the production of angiotensin peptides, hence providing bypass loops for the RAS. This study investigated the expression of cathepsins B, D, and G in WHO grade I MG in relation to the putative TSC population we have previously demonstrated.Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining with antibodies for cathepsins B, D, and G was performed on WHO grade I MG tissue samples from 10 patients. Three of the MG samples subjected to DAB IHC staining underwent immunofluorescence (IF) IHC staining to investigate co-expression of each of these cathepsins using combinations of smooth muscle actin (SMA) and embryonic stem cell marker OCT4. NanoString mRNA expression (n = 6) and Western blotting (WB; n = 5) analyses, and enzyme activity assays (EAAs; n = 3), were performed on snap-frozen WHO grade I MG tissue samples to confirm transcriptional activation, protein expression, and functional activity of these proteins, respectively.Results: DAB IHC staining demonstrated expression of cathepsins B, D, and G in all 10 MG samples. NanoString mRNA expression and WB analyses showed transcriptional activation and protein expression of all three cathepsins, although cathepsin G was expressed at low levels. EAAs demonstrated that cathepsin B and cathepsin D were functionally active. IF IHC staining illustrated localization of cathepsin B and cathepsin D to the endothelium and SMA+ pericyte layer of the microvessels, while cathepsin G was localized to cells scattered within the interstitium, away from the microvessels.Conclusion: Cathepsin B and cathepsin D, and to a lesser extent cathepsin G, are expressed in WHO grade I MG. Cathepsin B and cathepsin D are enzymatically active and are localized to the putative TSC population on the microvessels, whereas cathepsin G was localized to cells scattered within the interstitium, These results suggest the presence of bypass loops for the RAS, within WHO grade I MG

    Graft-vs-tumor effect in patients with advanced nasopharyngeal cancer treated with nonmyeloablative allogeneic PBSC transplantation

    Get PDF
    While nonmyeloablative peripheral blood stem cell transplantation (NST) has shown efficacy against several solid tumors, it is untested in nasopharyngeal cancer (NPC). In a phase II clinical trial, 21 patients with pretreated metastatic NPC underwent NST with sibling PBSC allografts, using CY conditioning, thymic irradiation and in vivo T-cell depletion with thymoglobulin. Stable lymphohematopoietic chimerism was achieved in most patients and prophylactic CYA was tapered at a median of day +30. Seven patients (33%) showed partial response and three (14%) achieved stable disease. Four patients were alive at 2 years and three showed prolonged disease control of 344, 525 and 550 days. With a median follow-up of 209 (4–1147) days, the median PFS was 100 days (95% confidence interval (CI), 66–128 days), and median OS was 209 days (95% CI, 128–236 days). Patients with chronic GVHD had better survival—median OS 426 days (95% CI, 194–NE days) vs 143 days (95% CI, 114–226 days) (P=0.010). Thus, NST may induce meaningful clinical responses in patients with advanced NPC
    • …
    corecore