4 research outputs found

    Intranasal insulin administration decreases cerebral blood flow in cortico‐limbic regions: A neuropharmacological imaging study in normal and overweight males

    Get PDF
    Aim: To assess and compare the effects of 160 IU intranasal insulin (IN‐INS) administration on regional cerebral blood flow (rCBF) in healthy male individuals with normal weight and overweight phenotypes. / Methods: Thirty young male participants (mean age 25.9 years) were recruited and stratified into two cohorts based on body mass index: normal weight (18.5‐24.9 kg/m2) and overweight (25.0‐29.9 kg/m2). On separate mornings participants received 160 IU of IN‐INS using an intranasal protocol and intranasal placebo as part of a double‐blind crossover design. Thirty minutes following administration rCBF data were collected using a magnetic resonance imaging method called pseudocontinuous arterial spin labelling. Blood samples were collected to assess insulin sensitivity and changes over time in peripheral glucose, insulin and C‐peptide. / Results: Insulin sensitivity did not significantly differ between groups. Compared with placebo, IN‐INS administration reduced rCBF in parts of the hippocampus, insula, putamen, parahippocampal gyrus and fusiform gyrus in the overweight group. No effect was seen in the normal weight group. Insula rCBF was greater in the overweight group versus normal weight only under placebo conditions. Peripheral glucose and insulin levels were not affected by IN‐INS. C‐peptide levels in the normal weight group decreased significantly over time following IN‐INS administration but not placebo. / Conclusion: Insulin‐induced changes within key regions of the brain involved in gustation, memory and reward were observed in overweight healthy male individuals. Following placebo administration, differences in gustatory rCBF were observed between overweight and normal weight healthy individuals

    Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging

    Get PDF
    This study aimed to characterise three nasal drug delivery devices to evaluate their propensity to deliver human insulin solutions to the nasal cavity for redistribution to the central nervous system. Brain delivery was evaluated using functional magnetic resonance imaging to measure regional cerebral blood flow. Intranasal insulin administration has been hypothesised to exploit nose-to-brain pathways and deliver drug directly to the brain tissue whilst limiting systemic exposure. Three nasal pump-actuator configurations were compared for delivery of 400 IU/mL insulin solution by measuring droplet size distribution, plume geometry, spray pattern and in vitro deposition in a nasal cast. The device with optimal spray properties for nose to brain delivery (spray angle between 30° and 45°; droplet size between 20 and 50 μm) also favoured high posterior-superior deposition in the nasal cast and was utilised in a pharmacological magnetic resonance imaging study. Functional magnetic resonance imaging in healthy male volunteers showed statistically significant decreases in regional cerebral blood flow within areas dense in insulin receptors (bilateral amygdala) in response to intranasally administered insulin (160 IU) compared to saline (control). These changes correspond to the expected effects of insulin in the brain and were achieved using a simple nasal spray device and solution formulation. We recommend that a thorough characterisation of nasal delivery devices and qualitative/quantitative assessment of the administered dose is reported in all studies of nose to brain delivery so that responses can be evaluated with respect to posology and comparison between studies is facilitated

    Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs

    Get PDF
    Few medically-approved excipients are available for formulation strategies to endow microcarriers with improved performance in lung drug targeting. Konjac glucomannan (KGM) is a novel, biocompatible material, comprising mannose units potentially inducing macrophage uptake for the treatment of macrophage-mediated diseases. This work investigated spray-dried KGM microparticles as inhalable carriers of model antitubercular drugs, isoniazid (INH) and rifabutin (RFB). The polymer was characterised and different polymer/drug ratios tested in the production of microparticles for which respirability was assessed in vitro. The swelling of KGM microparticles and release of drugs in simulated lung fluid were characterised and the biodegradability in presence of beta-mannosidase, a lung hydrolase, determined. KGM microparticles were drug loaded with 66-91% association efficiency and had aerodynamic diameter around 3 mu m, which enables deep lung penetration. The microparticles swelled upon liquid contact by 40-50% but underwent size reduction (>62% in 90 min) in presence of beta-mannosidase, indicating biodegradability. Finally, drug release was tested showing slower release of RFB compared with INH but complete release of both within 24 h. This work identifies KGM as a biodegradable polymer of natural origin that can be engineered to encapsulate and release drugs in respirable microparticles with physical and chemical macrophage-targeting properties.info:eu-repo/semantics/publishedVersio
    corecore