8 research outputs found

    Local structural excitations in model glasses

    Full text link
    Structural excitations of model Lennard-Jones glass systems are investigated using the Activation-Relaxation-Technique (ART), which explores the potential energy landscape of a local minimum energy configuration by converging to a nearby saddle-point configuration. Performing ART results in a distribution of barrier energies that is single-peaked for well relaxed samples. The present work characterises such atomic scale excitations in terms of their local structure and environment. It is found that, at zero applied stress, many of the identified events consist of chain-like excitations that can either be extended or ring-like in their geometry. The location and activation energy of these saddle-point structures are found to correlate with the type of atom involved, and with spatial regions that have low shear moduli and are close to the excess free volume within the configuration. Such correlations are however weak and more generally the identified local structural excitations are seen to exist throughout the model glass sample. The work concludes with a discussion within the framework of α\alpha and β\beta relaxation processes that are known to occur in the under-cooled liquid regime.Comment: 34 Pages, 13 Figure

    Local structural excitations in model glasses

    No full text
    corecore