43 research outputs found

    Diffusion on semiconductor surfaces

    Get PDF
    Semiconductor devices continue to get ever smaller, which means that individual defects play an increasingly important role in their performance. In the process of fabricating more innovative, better performing devices, crystal growers have developed an amazing intuition about how atoms and molecules behave on crystal surfaces. Their intuition, formed from knowledge of fundamental atomic-scale processes and honed through experience, concerns such questions as where atoms and molecules stick, how they interact with each other and the substrate, and how they diffus

    Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells.

    Get PDF
    With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Highly Effective GeNi Alloy Contact Diffusion Barrier for BiSbTe Long-Term Thermal Exposure

    Full text link
    A GeNi alloy diffusion barrier for contacts on bismuth antimony telluride is proposed. Multiple gold contact diffusion barriers were tested at different thermal aging conditions in air and reducing atmospheres. Among all diffusion barriers, the GeNi alloy barrier shows the best performance for bulk samples with no substantial degradation of the contact resistance, no contact color change, and no change of thermoelectric properties. We observed DAu−GeNi = (9.8 ± 2.7) × 10−20 m2/s within the GeNi alloy barrier, which is 4 times smaller than DAu−BiSbTe. The presence of the initial Ge layer also proves to be effective in reducing nickel diffusion yielding DNi−BiSbTe = (8.57 ± 0.49) × 10−19 m2/s. During GeNi alloy formation, Ge diffusion into BiSbTe produces GeTe, which apparently blocks the van der Waals gaps eliminating Au and Ni fast diffusion pathways. Thermal aging of BiSbTe nanowires shows that Au and Ni diffusion degrades the thermoelectric power factor, whereas the GeNi alloy barrier sample is mostly preserved. The GeNi alloy barrier is a reliable solution to long-term thermal applications of BiTe-based materials

    Nanoscale Electronics and Mechanics.

    No full text

    "Bottom-up" meets "top-down" : self-assembly to direct manipulation of nanostructures on length scales from atoms to microns.

    No full text
    This document is the final SAND Report for the LDRD Project 102660 - 'Bottomup' meets 'top-down': Self-assembly to direct manipulation of nanostructures on length scales from atoms to microns - funded through the Strategic Partnerships investment area as part of the National Institute for Nano-Engineering (NINE) project
    corecore