11 research outputs found

    Targeted Therapy for Orofacial Pain : A Novel Perspective for Precision Medicine

    Get PDF
    Orofacial pain (OFP) is a dental specialty that includes the diagnosis, management and treatment of disorders of the jaw, mouth, face, head and neck. Evidence-based understanding is critical in effectively treating OFPs as the pathophysiology of these conditions is multifactorial. Since OFP impacts the quality of life of the affected individuals, treating patients successfully is of the utmost significance. Despite the therapeutic choices available, treating OFP is still quite challenging, owing to inter-patient variations. The emerging trends in precision medicine could probably lead us to a paradigm shift in effectively managing the untreatable long-standing pain conditions. Precision medicine is designed based on the patient’s genetic profile to meet their needs. Several significant relationships have been discovered based on the genetics and genomics of pain in the past, and some of the notable targets are discussed in this review. The scope of this review is to discuss preclinical and clinical trials that include approaches used in targeted therapy for orofacial pain. Future developments in pain medicine should benefit from current trends in research into novel therapeutic approaches

    Dentin degradonomics ? The potential role of salivary MMP-8 in dentin caries

    Get PDF
    Dentin caries involves dissolution of minerals which eventually leads to degradation of organic matrix. This degradation which was thought to be by bacterial proteases is now considered to be orchestrated by endogenous collagenases such as Matrix Metalloproteinases (MMPs). This paper aims to estimate the salivary levels of MMP-8 in dental caries and also to asses the various risk factors that contribute to the formation of dental caries. A random sample of 75 adults aged 18-35 were included and categorized based on the number of caries lesions (MCL). Standard clinical examinations were performed, and stimulated saliva was collected and analyzed for concentrations of MMP-8 using enzyme-linked immunosorbent assay. Caries risk factors were assessed using a chair-side kit. Correlation of MMP-8 in varying MCL using Spearman?s correlation was done. Multiple linear regression analysis was done to asses the relationship between various caries risk factors with MMP-8 and MCL as dependent variable. The study results showed a statistically significant higher concentration of MMP-8 in carious group (MCL 1-2) and MCL ?3 compared to non-carious group. On correlating, the levels of MMP-8 were seen to be higher in MCL ?3 than in MCL = 0 and MCL 1-2. The mean MMP-8 of controls, MCL 1-2, and MCL ?3 were 131.34ng/ml, 230.14ng/ml, and 391.91ng/ml respectively. Multiple linear regression analysis with MMP-8 as the dependent variable revealed caries, buffer capacity and S. mutans count as significant variables. Using MCL as the dependent variable the only significant variable was MMP-8 levels. The study suggests that subjects with caries have elevated MMP-8 levels compared with subjects with no carious lesions. There is also a positive correlation between the number of carious lesions and MMP-8 levels suggesting that MMP-8 plays an important role in the degradation of dentin and causes progression of caries

    Identification of microRNA Signatures in Peripheral Blood of Young Women as Potential Biomarkers for Metal Allergy

    Get PDF
    MicroRNA (miRNA) is a short (19–24 nucleotide) endogenous non-protein RNA that exists in the body and controls the translation process from genes to proteins. It has become useful as a diagnostic tool and a potential treatment target in cancer research. To explore the function of miRNA in contact dermatitis, female participants with a positive metal allergy diagnosis (n = 3) were enrolled along with additional female participants with no medical history of metal allergy (n = 3). A patch test was performed on each participant. Peripheral blood was collected from all the participants before the patch test and at days 3 and 7 after starting the patch test. After total RNA was obtained from peripheral blood leukocytes and cDNA was generated, microarray analysis was performed to analyze the large-scale circulating miRNA profile. Real-time polymerase chain reaction (RT-PCR) was then used to clarify the overall target miRNA expression. Downregulation of hsa-let-7d-5p, hsa-miR-24-3p, hsa-miR-23b-3p, hsa-miR-26b-5p, and hsa-miR-150-5p was found on day 7. Certain miRNAs were confirmed using RT-PCR. These peripheral blood miRNAs could be diagnostic biomarkers for metal allergies

    Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis

    Get PDF
    Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat’s post-intervention pain response. In the von Frey’s test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain

    Dentin-pulp regeneration by 3D layered cell sheet

    Get PDF
    The dentin-pulp complex is a unique structure in teeth that contains both hard and soft tissues. Generally, deep caries and trauma cause damage to the dentin-pulp complex, and if left untreated, this damage will progress to irreversible pulpitis. The aim of this study was to fabricate a layered cell sheet composed of rat dental pulp (DP) cells and odontogenic differentiation of pulp (OD) cells and to investigate the ability to regenerate the dentin-pulp complex in a scaffold tooth. We fabricated two single cell sheets composed of DP cells (DP cell sheet) or OD cells (OD cell sheet) and a layered cell sheet made by layering both cells. The characteristics of the fabricated cell sheets were analyzed using light microscopy, scanning electron microscopy (SEM), hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC). Furthermore, the cell sheets were transplanted into the subrenal capsule of immunocompromised mice for 8 weeks. Following this, the regenerative capacity to form dentin-like tissue was evaluated using micro-computed tomography (Micro-CT), HE staining, and IHC. The findings of SEM and IHC confirmed that layered cell sheets fabricated by stacking OD cells and DP cells maintained their cytological characteristics. Micro-CT of layered cell sheet transplants revealed a mineralized capping of the access cavity in the crown area, similar to that of natural dentin. In contrast, the OD cell sheet group demonstrated the formation of irregular fragments of mineralized tissue in the pulp cavity, and the DP cell sheet did not develop any hard tissue. Moreover, bone volume/tissue volume (BV/TV) showed a significant increase in hard tissue formation in the layered cell sheet group compared to that in the single cell sheet group (p<0.05). HE staining also showed a combination of soft and hard tissue formation in the layered cell sheet group. Furthermore, IHC confirmed that the dentin-like tissue generated from the layered cell sheet expressed characteristic markers of dentin but not bone equivalent to that of a natural tooth. In conclusion, this study demonstrates the feasibility of regenerating dentin-pulp complex using a bioengineered tissue designed to simulate the anatomical structure

    片側末梢投与されたA型ボツリヌス毒素は動物モデルにおいて両側三叉神経節に局在する

    Get PDF
    Peripheral nerve injury leads to sensory ganglion hyperexcitation, which increases neurotransmitter release and neuropathic pain. Botulinum toxin type A (BoNT/A) regulates pain transmission by reducing neurotransmitter release, thereby attenuating neuropathic pain. Despite multiple studies on the use of BoNT/A for managing neuropathic pain in the orofacial region, its exact mechanism of transport remains unclear. In this study, we investigated the effects of BoNT/A in managing neuropathic pain in two different animal models and its transport mechanism in the trigeminal nerve. Intraperitoneal administration of cisplatin induced bilateral neuropathic pain in the orofacial region, reducing the head withdrawal threshold to mechanical stimulation. Unilateral infraorbital nerve constriction (IONC) also reduced the ipsilateral head withdrawal threshold to mechanical stimulation. Unilateral peripheral administration of BoNT/A to the rat whisker pad attenuated cisplatin-induced pain behavior bilaterally. Furthermore, contralateral peripheral administration of BoNT/A attenuated neuropathy-induced behavior caused by IONC. We also noted the presence of BoNT/A in the blood using the mouse bioassay. In addition, the Alexa Fluor-488-labeled C-terminal half of the heavy chain of BoNT/A (BoNT/A-Hc) was localized in the neurons of the bilateral trigeminal ganglia following its unilateral administration. These findings suggest that axonal and hematogenous transport are involved in the therapeutic effects of peripherally administered BoNT/A in the orofacial region

    Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis

    No full text
    Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat&rsquo;s post-intervention pain response. In the von Frey&rsquo;s test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain

    Identification of microRNA Signatures in Peripheral Blood of Young Women as Potential Biomarkers for Metal Allergy

    No full text
    MicroRNA (miRNA) is a short (19&ndash;24 nucleotide) endogenous non-protein RNA that exists in the body and controls the translation process from genes to proteins. It has become useful as a diagnostic tool and a potential treatment target in cancer research. To explore the function of miRNA in contact dermatitis, female participants with a positive metal allergy diagnosis (n = 3) were enrolled along with additional female participants with no medical history of metal allergy (n = 3). A patch test was performed on each participant. Peripheral blood was collected from all the participants before the patch test and at days 3 and 7 after starting the patch test. After total RNA was obtained from peripheral blood leukocytes and cDNA was generated, microarray analysis was performed to analyze the large-scale circulating miRNA profile. Real-time polymerase chain reaction (RT-PCR) was then used to clarify the overall target miRNA expression. Downregulation of hsa-let-7d-5p, hsa-miR-24-3p, hsa-miR-23b-3p, hsa-miR-26b-5p, and hsa-miR-150-5p was found on day 7. Certain miRNAs were confirmed using RT-PCR. These peripheral blood miRNAs could be diagnostic biomarkers for metal allergies

    Identification of microRNA Signatures in Peripheral Blood of Young Women as Potential Biomarkers for Metal Allergy

    No full text
    MicroRNA (miRNA) is a short (19–24 nucleotide) endogenous non-protein RNA that exists in the body and controls the translation process from genes to proteins. It has become useful as a diagnostic tool and a potential treatment target in cancer research. To explore the function of miRNA in contact dermatitis, female participants with a positive metal allergy diagnosis (n = 3) were enrolled along with additional female participants with no medical history of metal allergy (n = 3). A patch test was performed on each participant. Peripheral blood was collected from all the participants before the patch test and at days 3 and 7 after starting the patch test. After total RNA was obtained from peripheral blood leukocytes and cDNA was generated, microarray analysis was performed to analyze the large-scale circulating miRNA profile. Real-time polymerase chain reaction (RT-PCR) was then used to clarify the overall target miRNA expression. Downregulation of hsa-let-7d-5p, hsa-miR-24-3p, hsa-miR-23b-3p, hsa-miR-26b-5p, and hsa-miR-150-5p was found on day 7. Certain miRNAs were confirmed using RT-PCR. These peripheral blood miRNAs could be diagnostic biomarkers for metal allergies
    corecore