5 research outputs found

    Organocatalyzed Asymmetric Aldol Reactions of Ketones and β,γ‑Unsaturated α‑Ketoesters and Phenylglyoxal Hydrates

    No full text
    Enantioselective aldol reactions of acetophenone with β,γ-unsaturated α-ketoesters and cyclic ketones with phenylglyoxal hydrates were realized with cinchona alkaloid-derived thiourea catalysts. The corresponding aldol products were obtained in high yields and good to excellent diastereoselectivities and enantioselectivities (up to 95% ee)

    Organocatalyzed Asymmetric Aldol Reactions of Ketones and β,γ‑Unsaturated α‑Ketoesters and Phenylglyoxal Hydrates

    No full text
    Enantioselective aldol reactions of acetophenone with β,γ-unsaturated α-ketoesters and cyclic ketones with phenylglyoxal hydrates were realized with cinchona alkaloid-derived thiourea catalysts. The corresponding aldol products were obtained in high yields and good to excellent diastereoselectivities and enantioselectivities (up to 95% ee)

    Inhibition of LIFR Blocks Adiposity-Driven Endometrioid Endometrial Cancer Growth

    No full text
    Endometrial cancer (EC) is the fourth most common cancer in women, and half of the endometrioid EC (EEC) cases are attributable to obesity. However, the underlying mechanism(s) of obesity-driven EEC remain(s) unclear. In this study, we examined whether LIF signaling plays a role in the obesity-driven progression of EEC. RNA-seq analysis of EEC cells stimulated by adipose conditioned medium (ADP-CM) showed upregulation of LIF/LIFR-mediated signaling pathways including JAK/STAT and interleukin pathways. Immunohistochemistry analysis of normal and EEC tissues collected from obese patients revealed that LIF expression is upregulated in EEC tissues compared to the normal endometrium. Treatment of both primary and established EEC cells with ADP-CM increased the expression of LIF and its receptor LIFR and enhanced proliferation of EEC cells. Treatment of EEC cells with the LIFR inhibitor EC359 abolished ADP-CM induced colony formation andcell viability and decreased growth of EEC organoids. Mechanistic studies using Western blotting, RT-qPCR and reporter assays confirmed that ADP-CM activated LIF/LIFR downstream signaling, which can be effectively attenuated by the addition of EC359. In xenograft assays, co-implantation of adipocytes significantly enhanced EEC xenograft tumor growth. Further, treatment with EC359 significantly attenuated adipocyte-induced EEC progression in vivo. Collectively, our data support the premise that LIF/LIFR signaling plays an important role in obesity-driven EEC progression and the LIFR inhibitor EC359 has the potential to suppress adipocyte-driven tumor progression

    Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis

    No full text
    Abstract Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa
    corecore