10 research outputs found

    Aryl hydrocarbon receptor nuclear translocator (ARNT) gene as a positional and functional candidate for type 2 diabetes and prediabetic intermediate traits: Mutation detection, case-control studies, and gene expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ARNT, a member of the basic helix-loop-helix family of transcription factors, is located on human chromosome 1q21–q24, a region which showed well replicated linkage to type 2 diabetes. We hypothesized that common polymorphisms in the <it>ARNT </it>gene might increase the susceptibility to type 2 diabetes through impaired glucose-stimulated insulin secretion.</p> <p>Methods</p> <p>We selected 9 single nucleotide polymorphisms to tag common variation across the <it>ARNT </it>gene. Additionally we searched for novel variants in functional coding domains in European American and African American samples. Case-control studies were performed in 191 European American individuals with type 2 diabetes and 187 nondiabetic European American control individuals, and in 372 African American individuals with type 2 diabetes and 194 African American control individuals. Metabolic effects of <it>ARNT </it>variants were examined in 122 members of 26 European American families from Utah and in 225 unrelated individuals from Arkansas. Gene expression was tested in 8 sibling pairs discordant for type 2 diabetes.</p> <p>Results</p> <p>No nonsynonymous variants or novel polymorphisms were identified. No SNP was associated with type 2 diabetes in either African Americans or European Americans, but among nondiabetic European American individuals, <it>ARNT </it>SNPs rs188970 and rs11204735 were associated with acute insulin response (AIR<sub>g</sub>; p =< 0.005). SNP rs2134688 interacted with body mass index to alter β-cell compensation to insulin resistance (disposition index; p = 0.004). No significant difference in <it>ARNT </it>mRNA levels was observed in transformed lymphocytes from sibling pairs discordant for type 2 diabetes.</p> <p>Conclusion</p> <p>Common <it>ARNT </it>variants are unlikely to explain the linkage signal on chromosome 1q, but may alter insulin secretion in nondiabetic subjects. Our studies cannot exclude a role for rare variants or variants of small (< 1.6) effect size.</p

    Uptake of H2H_2 and CO2CO_2 by graphene

    No full text
    Graphene samples prepared by the exfoliation of graphitic oxide and conversion of nanodiamond exhibit good hydrogen uptake at 1 atm, 77 K, the uptake going up to 1.7 wt %. The hydrogen uptake varies linearly with the surface area, and the extrapolated value of hydrogen uptake by single-layer graphene works out to be just above 3 wt %. The H2H_2 uptake at 100 atm and 298 K is found to be 3 wt % or more, suggesting thereby the single-layer graphene would exhibit much higher uptakes. Equally interestingly, the graphene samples prepared by us show high uptake of CO,,, the value reaching up to 35 wt % at I atm and 195 K. The first- principles calculations show that hydrogen molecules sit alternately in parallel and perpendicular orientation on the six-membered rings of the graphene. Up to 7.7 wt % of hydrogen can be accommodated on single-layered graphene. CO2CO_2 molecules sit alternatively in a parallel fashion on the rings, giving use to a maximum uptake of 37.93 wt % in single-layer graphene. The presence of more than one layer of graphene in our samples causes a decrease in the H2H_2 uptake

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore