1,645 research outputs found

    Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations

    Get PDF
    Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C1-C4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels.Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10-3 consistent with direct observations by other investigators within the crater rim. © 2010

    Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    Get PDF
    In this paper we describe a novel framework for the discovery of the topical content of a data corpus, and the tracking of its complex structural changes across the temporal dimension. In contrast to previous work our model does not impose a prior on the rate at which documents are added to the corpus nor does it adopt the Markovian assumption which overly restricts the type of changes that the model can capture. Our key technical contribution is a framework based on (i) discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model, and (iii) a temporal similarity graph which allows for the modelling of complex topic changes: emergence and disappearance, evolution, and splitting and merging. The power of the proposed framework is demonstrated on the medical literature corpus concerned with the autism spectrum disorder (ASD) - an increasingly important research subject of significant social and healthcare importance. In addition to the collected ASD literature corpus which we will make freely available, our contributions also include two free online tools we built as aids to ASD researchers. These can be used for semantically meaningful navigation and searching, as well as knowledge discovery from this large and rapidly growing corpus of literature.Comment: In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 201

    Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B)

    Get PDF
    Nonmethane hydrocarbons (NMHCs) and selected halocarbons were measured in whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. The large-scale spatial distributions of NMHCs and C2Cl4 reveal a much more pronounced north-south interhemispheric gradient, with higher concentrations in the north and lower levels in the south, than for the late August to early October 1996 PEM-Tropics A experiment. Strong continental outflow and winter-long accumulation of pollutants led to seasonally high Northern Hemisphere trace gas levels during PEM-Tropics B. Observations of enhanced levels of Halon 1211 (from developing Asian nations such as the PRC) and CH3Cl (from SE Asian biomass burning) support a significant southern Asian influence at altitudes above 1 km and north of 10° N. By contrast, at low altitude over the North Pacific the dominance of urban/industrial tracers, combined with low levels of Halon 1211 and CH3Cl, indicate a greater influence from developed nations such as Japan, Europe, and North America. Penetration of air exhibiting aged northern hemisphere characteristics was frequently observed at low altitudes over the equatorial central and western Pacific south to ∼5° S. The relative lack of southern hemisphere biomass burning sources and the westerly position of the South Pacific convergence zone contributed to significantly lower PEM-Tropics B mixing ratios of the NMHCs and CH3Cl south of 10° S compared to PEM-Tropics A. Therefore the trace gas composition of the South Pacific troposphere was considerably more representative of minimally polluted tropospheric conditions during PEM-Tropics B. Copyright 2001 by the American Geophysical Union

    ISU String Project Winter Concert: November 13, 2024

    Get PDF
    Center for the Performing Arts December 13, 2024 Friday Evening 7:00 p.m
    corecore