117 research outputs found

    Bisphenol A Data in NHANES Suggest Longer than Expected Half-Life, Substantial Nonfood Exposure, or Both

    Get PDF
    Reproduced with permission from Environmental Health Perspectives. doi:10.1289/ehp.0800376It is commonly stated in the literature on human exposure to bisphenol A (BPA) that food is the predominant BPA exposure source, and that BPA is rapidly and completely cleared from the body. If this is correct, BPA levels in fasting individuals should decrease with increased fasting time. We set out to investigate the relationship between urine BPA concentration and fast¬ing time in a population-based sample. Overall, BPA levels did not decline rapidly with fasting time in this sample. This suggests substantial nonfood exposure, accumulation in body tissues such as fat, or both. Explaining these findings may require experimental pharmacokinetic studies of chronic BPA exposure, further examination of BPA levels and effects in fat, and a search for important nonfood sources.This work was supported by National Institute of Environmental Health Sciences Training Grant ES07026 and University of Rochester Environmental Health Sciences Center Grant ES01247

    Anogenital Distance and Phthalate Exposure: Swan et al. Respond

    Get PDF
    Reproduced with permission from Environmental Health Perspectives. DOI:10.1289/ehp.114-a20Swan et al. respond to several points made by McEwen and Renner regarding their recent study comparing anogenital distance (AGD) as a measure of androgen action in humans

    Semen quality in relation to biomarkers of pesticide exposure.

    Get PDF
    We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously

    Prenatal phthalate exposures and anogenital distance in Swedish boys

    Get PDF
    BACKGROUND: Phthalates are used as plasticizers in soft polyvinyl chloride (PVC) and in a large number of consumer products. Because of reported health risks, diisononyl phthalate (DiNP) has been introduced as a replacement for di(2-ethylhexyl) phthalate (DEHP) in soft PVC. This raises concerns because animal data suggest that DiNP may have antiandrogenic properties similar to those of DEHP. The anogenital distance (AGD)-the distance from the anus to the genitals-has been used to assess reproductive toxicity. OBJECTIVE: The objective of this study was to examine the associations between prenatal phthalate exposure and AGD in Swedish infants. METHODS: AGD was measured in 196 boys at 21 months of age, and first-trimester urine was analyzed for 10 phthalate metabolites of DEP (diethyl phthalate), DBP (dibutyl phthalate), DEHP, BBzP (benzylbutyl phthalate), as well as DiNP and creatinine. Data on covariates were collected by questionnaires. RESULTS: The most significant associations were found between the shorter of two AGD measures (anoscrotal distance; AGDas) and DiNP metabolites and strongest for oh-MMeOP [mono(4-methyl-7-hydroxyloctyl) phthalate] and oxo-MMeOP [mono-(2-ethyl-5-oxohexyl) phthalate]. However, the AGDas reduction was small (4%) in relation to more than an interquartile range increase in DiNP exposure. CONCLUSIONS: These findings call into question the safety of substituting DiNP for DEHP in soft PVC, particularly because a shorter male AGD has been shown to relate to male genital birth defects in children and impaired reproductive function in adult males and the fact that human levels of DiNP are increasing globally

    Prenatal Triclosan Exposure and Anthropometric Measures Including Anogenital Distance in Danish Infants

    Get PDF
    BACKGROUND: Triclosan (TCS) is widely used as an antibacterial agent in consumer products such as hand soap and toothpaste, and human exposure is widespread. TCS is suspected of having endocrine-disrupting properties, but few human studies have examined the developmental effects of prenatal TCS exposure. OBJECTIVES: We prospectively examined associations between prenatal TCS exposure and anthropometric measures at birth and anogenital distance (AGD) at 3 months of age. METHODS: Pregnant women from the Odense Child Cohort (n = 514) provided urine samples at approximately gestational week 28 (median 28.7 weeks, range 26.4–34.0), and urinary TCS concentration was measured by isotope dilution TurboFlow–liquid chromatography–tandem mass spectrometry. Multiple linear regression analysis was used to examine associations between prenatal TCS exposure and measures of size at birth (birth weight, length, head and abdominal circumference) and AGD at 3 months of age (median 3.3 months, range 2.3–6.7 months), controlling for potential confounders. RESULTS: Newborn boys in the highest quartile of prenatal TCS exposure had a 0.7-cm [95% confidence interval (CI): –1.2, –0.1, p = 0.01] smaller head circumference than boys in the lowest quartile. Additionally in boys, inverse associations of borderline statistical significance were observed between prenatal TCS exposure and abdominal circumference at birth and AGD at 3 months of age (p-values < 0.10). Prenatal TCS exposure was not significantly associated with any of the outcomes in girls. However, AGD was measured in fewer girls, and we observed no significant interactions between a child’s sex and prenatal TCS exposure in anthropometric measures at birth. CONCLUSION: Prenatal TCS exposure was associated with reduced head and abdominal circumference at birth and with reduced AGD at 3 months of age in boys, although the last two findings were statistically nonsignificant. These findings require replication but are compatible with an anti-androgenic effect of prenatal TCS exposure on fetal growth in boys. CITATION: Lassen TH, Frederiksen H, Kyhl HB, Swan SH, Main KM, Andersson AM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, Jensen TK. 2016. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ Health Perspect 124:1261–1268; http://dx.doi.org/10.1289/ehp.140963

    Geographic differences in semen quality of fertile U.S. males.

    Get PDF
    Although geographic variation in semen quality has been reported, this is the first study in the United States to compare semen quality among study centers using standardized methods and strict quality control. We evaluated semen specimens from partners of 512 pregnant women recruited through prenatal clinics in four U.S. cities during 1999-2001; 91% of men provided two specimens. Sperm concentration, semen volume, and motility were determined at the centers, and morphology was assessed at a central laboratory. Study protocols were identical across centers, and quality control was rigorously maintained. Sperm concentration was significantly lower in Columbia, Missouri, than in New York, New York; Minneapolis, Minnesota; and Los Angeles, California. Mean counts were 58.7, 102.9, 98.6, and 80.8 X 10(6)/mL (medians 53.5, 88.5, 81.8, and 64.8 X 10(6)/mL) in Missouri, New York, Minnesota, and California, respectively. The total number of motile sperm was also lower in Missouri than in other centers: 113, 196, 201, and 162 X 10(6) in Missouri, New York, Minnesota, and California, respectively. Semen volume and the percent morphologically normal sperm did not differ appreciably among centers. These between-center differences remained significant in multivariate models that controlled for abstinence time, semen analysis time, age, race, smoking, history of sexually transmitted disease, and recent fever (all p-values < 0.01). Confounding factors and differences in study methods are unlikely to account for the lower semen quality seen in this mid-Missouri population. These data suggest that sperm concentration and motility may be reduced in semirural and agricultural areas relative to more urban and less agriculturally exposed areas
    corecore