25 research outputs found
Interaction of the phencyclidine model of schizophrenia and nicotine on total and categorized ultrasonic vocalizations in rats
Patients with schizophrenia smoke cigarettes at a higher rate than the general population. We hypothesized that a factor in this comorbidity is sensitivity to the reinforcing and reinforcement- enhancement effects of nicotine.
Phencyclidine (PCP) was used to model behavioral changes resembling negative symptoms of schizophrenia in rats. USVs in rats have been used to measure emotional states, with 50 kHz USVs indicating positive states and 22 kHz indicating negative. Total and categorized numbers of 22 and 50 kHz ultrasonic vocalizations (USVs) and USVs during a visual stimulus (e.g. a potential measure of reinforcement-enhancement) were examined in rats following .injection ofh PCP (2.0 mg/kg), and/or nicotine (0.2 or 0.4 mg/kg) daily for 7 days. PCP was then discontinued and all rats received nicotine (0.2 mg/kg and 0.4 mg/kg) and PCP (2.0 mg/kg) on 3 challenge days.
PCP acutely decreased 50 kHz vocalizations while repeated nicotine potentiated rates of vocalizations, with similar patterns during light presentations. Rats in the PCP and nicotine combination groups made more 50 kHz vocalizations compared to control groups on challenge days.
We conclude that PCP may produce a reward deficit that is shown by decreased 50 kHz USVs, and behaviors post-PCP exposure may best model the comorbidity between schizophrenia and nicotine
Behavioral Effects of Phencyclidine on Nicotine Self- Administration and Reinstatement in the Presence or Absence of a Visual Stimulus in Rats
Rationale—Tobacco use is a serious health problem in the United States and this problem is potentiated in patients with schizophrenia. The reward system is implicated in schizophrenia and may contribute to the high comorbidity between nicotine use and schizophrenia but very little research has been done on the topic. The reward-enhancement effect of nicotine has been shown to be important in nicotine use, but there have been no studies on this effect in animal models of schizophrenia.
Objectives—This study was designed to determine the effects of phencyclidine, used to model negative symptoms of schizophrenia, on self-administration of nicotine with or without a co-occurring sensory reinforcer [i.e., visual stimulus (VS)] in rats.
Methods—Phencyclidine (2.0 mg/kg) was administered before each of 7 nicotine self- administration sessions (0.01 mg/kg/inf) after which rats (n=8–9 per group) were given 7 days of extinction without phencyclidine pretreatment. Reinstatement using phencyclidine (2.0 mg/kg), nicotine (0.2 mg/kg), and yohimbine (1.25 mg/kg, a pharmacological stressor) were tested after extinction to determine if previous exposure to phencyclidine would alter reinstatement of active lever pressing.
Results—Phencyclidine initially decreased nicotine self-administration, but only in the groups with a concurrent VS. This decrease in self-administration dissipated after 5 days. During reinstatement, rats that had previously received phencyclidine during self-administration with a VS were more sensitive to stress-induced reinstatement than any other group.
Conclusions—These results show a transitory effect of phencyclidine on nicotine self- administration. Phencyclidine may induce a potential sensitivity to pharmacological stressors contributing to reinstatement of nicotine
Interaction of the phencyclidine model of schizophrenia and nicotine on total and categorized ultrasonic vocalizations in rats
Patients with schizophrenia smoke cigarettes at a higher rate than the general population. We hypothesized that a factor in this comorbidity is sensitivity to the reinforcing and reinforcement- enhancement effects of nicotine.
Phencyclidine (PCP) was used to model behavioral changes resembling negative symptoms of schizophrenia in rats. USVs in rats have been used to measure emotional states, with 50 kHz USVs indicating positive states and 22 kHz indicating negative. Total and categorized numbers of 22 and 50 kHz ultrasonic vocalizations (USVs) and USVs during a visual stimulus (e.g. a potential measure of reinforcement-enhancement) were examined in rats following .injection ofh PCP (2.0 mg/kg), and/or nicotine (0.2 or 0.4 mg/kg) daily for 7 days. PCP was then discontinued and all rats received nicotine (0.2 mg/kg and 0.4 mg/kg) and PCP (2.0 mg/kg) on 3 challenge days.
PCP acutely decreased 50 kHz vocalizations while repeated nicotine potentiated rates of vocalizations, with similar patterns during light presentations. Rats in the PCP and nicotine combination groups made more 50 kHz vocalizations compared to control groups on challenge days.
We conclude that PCP may produce a reward deficit that is shown by decreased 50 kHz USVs, and behaviors post-PCP exposure may best model the comorbidity between schizophrenia and nicotine
Examining the Reinforcement-Enhancement Effects of Phencyclidine and Its Interactions with Nicotine on Lever-Pressing for a Visual Stimulus
Nicotine is a widely-abused drug, yet its primary reinforcing effect does not seem potent as other stimulants such as cocaine. Recent research on the contributing factors toward chronic use of nicotine-containing products has implicated the role of reinforcement-enhancing effects of nicotine. The present study investigates whether phencyclidine (PCP) may also possess a reinforcement-enhancement effect and how this may interact with the reinforcement-enhancement effect of nicotine. PCP was tested for two reasons: 1) it produces discrepant results on overall reward, similar to that seen with nicotine and 2) it may elucidate how other compounds may interact with the reinforcement-enhancement of nicotine. Adult male Sprague-Dawley rats were trained to lever press for brief visual stimulus presentations under fixed-ratio (FR) schedules of reinforcement and then were tested with nicotine (0.2 or 0.4 mg/kg) and/or PCP (2.0 mg/kg) over six increasing FR values. A selective increase in active lever-pressing for the visual stimulus with drug treatment was considered evidence of a reinforcement-enhancement effect. PCP and nicotine separately increased active lever pressing for a visual stimulus in a dose-dependent manner and across the different FR schedules. The addition of PCP to nicotine did not increase lever-pressing for the visual stimulus, possibly due to a ceiling effect. The effect of PCP may be driven largely by its locomotor stimulant effects, whereas the effect of nicotine was independent of locomotor stimulation. This dissociation emphasizes that distinct pharmacological properties contribute to the reinforcement-enhancement effects of substances
Examining the Reinforcement-Enhancement Effects of Phencyclidine and Its Interactions with Nicotine on Lever-Pressing for a Visual Stimulus
Nicotine is a widely-abused drug, yet its primary reinforcing effect does not seem potent as other stimulants such as cocaine. Recent research on the contributing factors toward chronic use of nicotine-containing products has implicated the role of reinforcement-enhancing effects of nicotine. The present study investigates whether phencyclidine (PCP) may also possess a reinforcement-enhancement effect and how this may interact with the reinforcement-enhancement effect of nicotine. PCP was tested for two reasons: 1) it produces discrepant results on overall reward, similar to that seen with nicotine and 2) it may elucidate how other compounds may interact with the reinforcement-enhancement of nicotine. Adult male Sprague-Dawley rats were trained to lever press for brief visual stimulus presentations under fixed-ratio (FR) schedules of reinforcement and then were tested with nicotine (0.2 or 0.4 mg/kg) and/or PCP (2.0 mg/kg) over six increasing FR values. A selective increase in active lever-pressing for the visual stimulus with drug treatment was considered evidence of a reinforcement-enhancement effect. PCP and nicotine separately increased active lever pressing for a visual stimulus in a dose-dependent manner and across the different FR schedules. The addition of PCP to nicotine did not increase lever-pressing for the visual stimulus, possibly due to a ceiling effect. The effect of PCP may be driven largely by its locomotor stimulant effects, whereas the effect of nicotine was independent of locomotor stimulation. This dissociation emphasizes that distinct pharmacological properties contribute to the reinforcement-enhancement effects of substances
Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus
Tobacco use is the leading cause of preventable deaths worldwide. This habit is not only debilitating to individual users but also to those around them (second-hand smoking). Nicotine is the main addictive component of tobacco products and is a moderate stimulant and a mild reinforcer. Importantly, besides its unconditional effects, nicotine also has conditioned stimulus effects that may contribute to the tenacity of the smoking habit. Because the neurobiological substrates underlying these processes are virtually unexplored, the present study investigated the functional involvement of the dorsomedial caudate-putamen (dmCPu) in learning processes with nicotine as an interoceptive stimulus. Rats were trained using the discriminated goal-tracking task where nicotine injections (0.4 mg/kg; SC), on some days, were paired with intermittent (36 per session) sucrose deliveries; sucrose was not available on interspersed saline days. Pre-training excitotoxic or post-training transient lesions of anterior or posterior dmCPu were used to elucidate the role of these areas in acquisition or expression of associative learning with nicotine stimulus. Pre-training lesion of p-dmCPu inhibited acquisition while post-training lesions of p-dmCPu attenuated the expression of associative learning with the nicotine stimulus. On the other hand, post-training lesions of a-dmCPu evoked nicotine-like responding following saline treatment indicating the role of this area in disinhibition of learned motor behaviors. These results, for the first time, show functionally distinct involvement of a- and p-dmCPu in various stages of associative learning using nicotine stimulus and provide an initial account of neural plasticity underlying these learning processes
Disentangling the nature of the nicotine stimulus
Learning involving interoceptive stimuli likely plays an important role in many diseases and psychopathologies. Within this area, there has been extensive research investigating the interoceptive stimulus effects of abused drugs. In this pursuit, behavioral pharmacologists have taken advantage of what is known about learning processes and adapted the techniques to investigate the behavioral and receptor mechanisms of drug stimuli. Of particular interest is the nicotine stimulus and the use of the two-lever operant drug discrimination task and the Pavlovian drug discriminated goal-tracking task. There is strong concordance between the two methods when using “standard” testing protocols that minimize learning on test days. For example, ABT-418, nornicotine, and varenicline all fully evoked nicotine-appropriate responding. Notably, research from our laboratory with the discriminated goal-tracking task has used an alternative testing protocol. This protocol assesses stimulus substitution based on how well extinction learning using a non-nicotine ligand transfers back to the nicotine stimulus. These findings challenge conclusions based on more “standard” testing procedures (e.g., ABT-418 is not nicotinelike). As a starting point, we propose Thurstone scaling as a quantitative method for more precisely comparing transfer of extinction across doses, experiments, and investigators. We close with a discussion of future research directions and potential implications of the research for understanding interoceptive stimuli
Disentangling the nature of the nicotine stimulus
Learning involving interoceptive stimuli likely plays an important role in many diseases and psychopathologies. Within this area, there has been extensive research investigating the interoceptive stimulus effects of abused drugs. In this pursuit, behavioral pharmacologists have taken advantage of what is known about learning processes and adapted the techniques to investigate the behavioral and receptor mechanisms of drug stimuli. Of particular interest is the nicotine stimulus and the use of the two-lever operant drug discrimination task and the Pavlovian drug discriminated goal-tracking task. There is strong concordance between the two methods when using “standard” testing protocols that minimize learning on test days. For example, ABT-418, nornicotine, and varenicline all fully evoked nicotine-appropriate responding. Notably, research from our laboratory with the discriminated goal-tracking task has used an alternative testing protocol. This protocol assesses stimulus substitution based on how well extinction learning using a non-nicotine ligand transfers back to the nicotine stimulus. These findings challenge conclusions based on more “standard” testing procedures (e.g., ABT-418 is not nicotinelike). As a starting point, we propose Thurstone scaling as a quantitative method for more precisely comparing transfer of extinction across doses, experiments, and investigators. We close with a discussion of future research directions and potential implications of the research for understanding interoceptive stimuli
Parametric studies of antipsychotic-induced sensitization in the conditioned avoidance response model: roles of number of drug exposure, drug dose, and test–retest interval
Repeated haloperidol and olanzapine treatment produces an enhanced disruption of avoidance responding, a validated measure of antipsychotic activity. Experimental parameters affecting this sensitization-like effect have not been thoroughly examined. The present study investigated the role of three parameters (number of injections, dose, and interval between initial exposure and challenge) in antipsychotic sensitization in the conditioned avoidance response paradigm. Well-trained Sprague–Dawley rats received different numbers of drug treatment (1–5 days) or different doses of haloperidol (0.025–0.10 mg/kg, subcutaneously) or olanzapine (0.5–2.0 mg/kg, subcutaneously). After certain time intervals (4, 10 or 17 days), they were tested for the expression of haloperidol or olanzapine sensitization in a challenge test in which all rats were injected with a lower dose of haloperidol (0.025 mg/kg) or olanzapine (0.5 mg/kg). Throughout the drug-treatment period, both haloperidol and olanzapine dose-dependently enhanced their disruption of avoidance responding. Three days later, the sensitization induced by a low dose of haloperidol (0.025 mg/kg) or olanzapine (0.5 mg/kg) was only apparent in rats that received treatment for 5 days, but not in those that received treatment for 1–4 days. The sensitization induced by the medium and high doses of haloperidol (0.05 and 0.10 mg/kg) or olanzapine (1.0 and 2.0 mg/kg) was still robust even with only 3 days of treatment. The sensitization induced by a 3-day haloperidol (0.10 mg/kg) and olanzapine (2.0 mg/kg) treatment was long-lasting, still detectable 17 days after the last drug treatment. This study suggests that antipsychotic sensitization is a robust behavioral phenomenon. Its induction and expression are strongly influenced by parameters such as number of drug exposures, drug dose, and test–retest interval. Given the importance of antipsychotic sensitization in the maintenance of antipsychotic effects in the clinic, this study introduces a paradigm that can be used to investigate the behavioral and neurobiological mechanisms underlying antipsychotic sensitization
Alterations of acoustic features of 50 kHz vocalizations by nicotine and phencyclidine in rats
Ultrasonic vocalizations are widely used to examine affective states in rats, yet relatively few studies explore the acoustic features of vocalizations, especially in relation to drug exposure, and no studies have explored alterations in acoustic features over time. The goal of this study was to examine nicotine- and phencyclidine-induced alterations of bandwidth, duration, and frequency of 50 kHz vocalizations. The minimum and maximum frequency, bandwidth, and duration of calls were examined after 7 days of daily subcutaneous administration of phencyclidine (2.0 mg/kg) and nicotine (0.2 and 0.4 mg/kg) in male Sprague-Dawley rats. Bandwidth was significantly decreased in rats treated with both nicotine (0.2 and 0.4 mg/kg) and phencyclidine. Maximum frequency was lowest on the first day of exposure compared with all other days and was not altered by drug exposure. Call duration was not affected by time or drug exposure. These findings suggest the importance of studying alterations in acoustic features in time, especially those induced by drug exposure