18 research outputs found

    Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease

    Get PDF
    OBJECTIVE: The purpose of this study was to examine the relationship between vascular disease (and vascular risk factors), cognition and motor phenotype in Parkinson's disease (PD). METHODS: Recently diagnosed PD cases were enrolled in a multicenter prospective observational longitudinal cohort study. Montreal cognitive assessment (normal >23, mild cognitive impairment 22 to 23 or lower but without functional impairment, and dementia 21 or less with functional impairment) and Movement Disorder Society Unified PD Rating Scale part 3 (UPDRS 3) scores were analyzed in relation to a history of vascular events and risk factors. RESULTS: In 1759 PD cases, mean age 67.5 (standard deviation 9.3) years, mean disease duration 1.3 (standard deviation 0.9) years, 65.2% were men, 4.7% had a history of prior stroke or transient ischemic attack, and 12.5% had cardiac disease (angina, myocardial infarction, heart failure). In cases without a history of vascular disease, hypertension was recorded in 30.4%, high cholesterol 27.3%, obesity 20.7%, diabetes 7.2%, and cigarette smoking in 4.6%. Patients with prior stroke or transient ischemic attack were more likely to have cognitive impairment (42% vs 25%) and postural instability gait difficulty (53.5% vs 39.5%), but these findings were not significant after adjustment for age, sex, and disease duration (P = .075). The presence of more than 2 vascular risks was associated with worse UPDRS 3 motor scores (beta coefficient 4.05, 95% confidence interval 1.48, 6.61, p = .002) and with cognitive impairment (ordinal odds ratio 2.24, 95% confidence interval 1.34, 3.74, p = .002). In 842 patients (47.8%) with structural brain imaging, white matter leukoaraiosis, but not lacunar or territorial infarction, was associated with impaired cognition (p = .006) and postural instability gait difficulty (p = .010). CONCLUSION: Vascular comorbidity is significantly associated with cognitive and gait impairment in patients with early PD, which may have prognostic and treatment implications. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Developing and validating Parkinson's disease subtypes and their motor and cognitive progression

    Get PDF
    Objectives: To use a data-driven approach to determine the existence and natural history of subtypes of Parkinson’s disease (PD) using two large independent cohorts of patients newly diagnosed with this condition. // Methods: 1601 and 944 patients with idiopathic PD, from Tracking Parkinson’s and Discovery cohorts, respectively, were evaluated in motor, cognitive and non-motor domains at the baseline assessment. Patients were recently diagnosed at entry (within 3.5 years of diagnosis) and were followed up every 18 months. We used a factor analysis followed by a k-means cluster analysis, while prognosis was measured using random slope and intercept models. // Results: We identified four clusters: (1) fast motor progression with symmetrical motor disease, poor olfaction, cognition and postural hypotension; (2) mild motor and non-motor disease with intermediate motor progression; (3) severe motor disease, poor psychological well-being and poor sleep with an intermediate motor progression; (4) slow motor progression with tremor-dominant, unilateral disease. Clusters were moderately to substantially stable across the two cohorts (kappa 0.58). Cluster 1 had the fastest motor progression in Tracking Parkinson’s at 3.2 (95% CI 2.8 to 3.6) UPDRS III points per year while cluster 4 had the slowest at 0.6 (0.1–1.1). In Tracking Parkinson’s, cluster 2 had the largest response to levodopa 36.3% and cluster 4 the lowest 28.8%. // Conclusions: We have found four novel clusters that replicated well across two independent early PD cohorts and were associated with levodopa response and motor progression rates. This has potential implications for better understanding disease pathophysiology and the relevance of patient stratification in future clinical trials

    Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study

    Get PDF
    Our objective was to define the prevalence and clinical features of genetic Parkinson's disease in a large UK population-based cohort, the largest multicentre prospective clinico-genetic incident study in the world. We collected demographic data, Movement Disorder Society Unified Parkinson's Disease Rating Scale scores, and Montreal Cognitive Assessment scores. We analysed mutations in PRKN (parkin), PINK1, LRRK2 and SNCA in relation to age at symptom onset, family history and clinical features. Of the 2262 participants recruited to the Tracking Parkinson's study, 424 had young-onset Parkinson's disease (age at onset ≤ 50) and 1799 had late onset Parkinson's disease. A range of methods were used to genotype 2005 patients: 302 young-onset patients were fully genotyped with multiplex ligation-dependent probe amplification and either Sanger and/or exome sequencing; and 1701 late-onset patients were genotyped with the LRRK2 'Kompetitive' allele-specific polymerase chain reaction assay and/or exome sequencing (two patients had missing age at onset). We identified 29 (1.4%) patients carrying pathogenic mutations. Eighteen patients carried the G2019S or R1441C mutations in LRRK2, and one patient carried a heterozygous duplication in SNCA. In PRKN, we identified patients carrying deletions of exons 1, 4 and 5, and P113Xfs, R275W, G430D and R33X. In PINK1, two patients carried deletions in exon 1 and 5, and the W90Xfs point mutation. Eighteen per cent of patients with age at onset ≤30 and 7.4% of patients from large dominant families carried pathogenic Mendelian gene mutations. Of all young-onset patients, 10 (3.3%) carried biallelic mutations in PRKN or PINK1. Across the whole cohort, 18 patients (0.9%) carried pathogenic LRRK2 mutations and one (0.05%) carried an SNCA duplication. There is a significant burden of LRRK2 G2019S in patients with both apparently sporadic and familial disease. In young-onset patients, dominant and recessive mutations were equally common. There were no differences in clinical features between LRRK2 carriers and non-carriers. However, we did find that PRKN and PINK1 mutation carriers have distinctive clinical features compared to young-onset non-carriers, with more postural symptoms at diagnosis and less cognitive impairment, after adjusting for age and disease duration. This supports the idea that there is a distinct clinical profile of PRKN and PINK1-related Parkinson's disease. We estimate that there are approaching 1000 patients with a known genetic aetiology in the UK Parkinson's disease population. A small but significant number of patients carry causal variants in LRRK2, SNCA, PRKN and PINK1 that could potentially be targeted by new therapies, such as LRRK2 inhibitors

    Statins are underused in recent-onset Parkinson's disease with increased vascular risk: findings from the UK Tracking Parkinson's and Oxford Parkinson's Disease Centre (OPDC) discovery cohorts.

    No full text
    Background Cardiovascular disease (CVD) influences phenotypic variation in Parkinson’s disease (PD), and is usually an indication for statin therapy. It is less clear whether cardiovascular risk factors influence PD phenotype, and if statins are prescribed appropriately. Objectives To quantify vascular risk and statin use in recent onset PD, and examine the relationship between vascular risk, PD severity and phenotype. Methods Cardiovascular risk was quantified using the QRISK2 calculator (high ≥20%, medium ≥10 and &lt;20%, low risk &lt;10%). Motor severity and phenotype were assessed using the Movement Disorder Society Unified PD Rating Scale (UPDRS) and cognition by the Montreal cognitive assessment. Results In 2,909 individuals with recent onset PD, the mean age was 67.5 years (SD 9.3), 63.5% were male, and mean disease duration was 1.3 years (SD 0.9). 33.8% of cases had high vascular risk, 28.7% medium risk, and 22.3% low risk, while 15.2% of cases had established CVD. Increasing vascular risk and CVD were associated with older age (p&lt;0.001), worse motor score (p&lt;0.001), more cognitive impairment (p&lt;0.001), and worse motor phenotype (p=0.021). Statins were prescribed in 37.2% with high vascular risk, 15.1% with medium vascular risk, and 6.5% with low vascular risk, which compared with statin usage in 75.3% of those with CVD. Conclusion Over 60% of recent onset PD patients have high or medium cardiovascular risk (meriting statin usage), which is associated with a worse motor and cognitive phenotype. Statins are underused in these patients, compared to those with vascular disease, which is a missed opportunity for preventive treatment.</p

    Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease.

    No full text
    Background Impaired olfaction is an important feature in Parkinson's disease (PD) and other neurological diseases. A variety of smell identification tests exist such as “Sniffin’ Sticks” and the University of Pennsylvania Smell Identification Test (UPSIT). An important part of research is being able to replicate findings or combining studies in a meta-analysis. This is difficult if olfaction has been measured using different metrics. We present conversion methods between the: UPSIT, Sniffin’ 16, and Brief-SIT (B-SIT); and Sniffin’ 12 and Sniffin’ 16 odour identification tests. Methods We used two incident cohorts of patients with PD who were tested with either the Sniffin’ 16 (n = 1131) or UPSIT (n = 980) and a validation dataset of 128 individuals who took both tests. We used the equipercentile and Item Response Theory (IRT) methods to equate the olfaction scales. Results The equipercentile conversion suggested some bias between UPSIT and Sniffin’ 16 tests across the two groups. The IRT method shows very good characteristics between the true and converted Sniffin’ 16 (delta mean = 0.14, median = 0) based on UPSIT. The equipercentile conversion between the Sniffin’ 12 and 16 item worked well (delta mean = 0.01, median = 0). The UPSIT to B-SIT conversion showed evidence of bias but amongst PD cases worked well (mean delta = -0.08, median = 0). Conclusion We have demonstrated that one can convert UPSIT to B-SIT or Sniffin’ 16, and Sniffin’ 12 to 16 scores in a valid way. This can facilitate direct comparison between tests aiding future collaborative analyses and evidence synthesis.</p

    Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression

    No full text
    OBJECTIVES:To use a data-driven approach to determine the existence and natural history of subtypes of Parkinson's disease (PD) using two large independent cohorts of patients newly diagnosed with this condition. METHODS:1601 and 944 patients with idiopathic PD, from Tracking Parkinson's and Discovery cohorts, respectively, were evaluated in motor, cognitive and non-motor domains at the baseline assessment. Patients were recently diagnosed at entry (within 3.5 years of diagnosis) and were followed up every 18 months. We used a factor analysis followed by a k-means cluster analysis, while prognosis was measured using random slope and intercept models. RESULTS:We identified four clusters: (1)  fast motor progression with symmetrical motor disease, poor olfaction, cognition and postural hypotension; (2) mild motor and non-motor disease with intermediate motor progression; (3) severe motor disease, poor psychological well-being and  poor sleep with an intermediate motor progression; (4) slow motor progression with tremor-dominant, unilateral disease. Clusters were moderately to substantially stable across the two cohorts (kappa 0.58). Cluster 1 had the fastest motor progression in Tracking Parkinson's at 3.2 (95% CI 2.8 to 3.6) UPDRS III points per year while cluster 4 had the slowest at 0.6 (0.1-1.1). In Tracking Parkinson's, cluster 2 had the largest response to levodopa 36.3% and cluster 4 the lowest 28.8%. CONCLUSIONS:We have found four novel clusters that replicated well across two independent early PD cohorts and were associated with levodopa response and motor progression rates. This has potential implications for better understanding disease pathophysiology and the relevance of patient stratification in future clinical trials

    Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease.

    No full text
    Background Impaired olfaction is an important feature in Parkinson's disease (PD) and other neurological diseases. A variety of smell identification tests exist such as “Sniffin’ Sticks” and the University of Pennsylvania Smell Identification Test (UPSIT). An important part of research is being able to replicate findings or combining studies in a meta-analysis. This is difficult if olfaction has been measured using different metrics. We present conversion methods between the: UPSIT, Sniffin’ 16, and Brief-SIT (B-SIT); and Sniffin’ 12 and Sniffin’ 16 odour identification tests. Methods We used two incident cohorts of patients with PD who were tested with either the Sniffin’ 16 (n = 1131) or UPSIT (n = 980) and a validation dataset of 128 individuals who took both tests. We used the equipercentile and Item Response Theory (IRT) methods to equate the olfaction scales. Results The equipercentile conversion suggested some bias between UPSIT and Sniffin’ 16 tests across the two groups. The IRT method shows very good characteristics between the true and converted Sniffin’ 16 (delta mean = 0.14, median = 0) based on UPSIT. The equipercentile conversion between the Sniffin’ 12 and 16 item worked well (delta mean = 0.01, median = 0). The UPSIT to B-SIT conversion showed evidence of bias but amongst PD cases worked well (mean delta = -0.08, median = 0). Conclusion We have demonstrated that one can convert UPSIT to B-SIT or Sniffin’ 16, and Sniffin’ 12 to 16 scores in a valid way. This can facilitate direct comparison between tests aiding future collaborative analyses and evidence synthesis.</p
    corecore