11,523 research outputs found

    Alumina bearing in gas-lubricated gyros

    Get PDF
    Friction and wear properties of alumina bearings for use in gas-lubricated gyroscope

    A multiprocessor implementation of a contextual image processing algorithm

    Get PDF
    There are no author-identified significant results in this report

    Accurate prediction of gene feedback circuit behavior from component properties

    Get PDF
    A basic assumption underlying synthetic biology is that analysis of genetic circuit elements, such as regulatory proteins and promoters, can be used to understand and predict the behavior of circuits containing those elements. To test this assumption, we used time‐lapse fluorescence microscopy to quantitatively analyze two autoregulatory negative feedback circuits. By measuring the gene regulation functions of the corresponding repressor–promoter interactions, we accurately predicted the expression level of the autoregulatory feedback loops, in molecular units. This demonstration that quantitative characterization of regulatory elements can predict the behavior of genetic circuits supports a fundamental requirement of synthetic biology

    ECHO user's guide

    Get PDF
    There are no author-identified significant results in this report

    ECHO User\u27s Guide

    Get PDF
    Over the past several years, the ECHO classifiers have been developed to incorporate spatial as well as spectral information into the classifier decision criteria. This document contains a comprehensive description of the functional organization of the supervised and the nonsupervised ECHO processes, the manner in for individuals who intend to make use of the ECHO classifiers, although it is also of value to those wanting to understand of implement the ECHO algorithms

    The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia

    Get PDF
    AbstractRecent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization – IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate

    Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

    Get PDF
    Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure
    corecore