15 research outputs found

    Subcortical volumes across the lifespan: data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.Education and Child Studie

    Development and heritability of subcortical brain volumes at age 9 and 12

    No full text
    Subcortical brain structures are involved in a variety of cognitive and emotional functions and follow different trajectories of increase and decrease in volume from childhood to adulthood. The heritability of development of subcortical brain volumes during adolescence has not been studied comprehensively. In a longitudinal twin study, we estimated to what extent subcortical brain volumes are influenced by genetic factors at ages 9 and 12. In addition, we assessed whether new genes are expressed at age 12 and whether there is evidence for genotype by sex interaction. Brain scans were acquired for 112 and 89 twin pairs at 9 and 12years of age. In both boys and girls, there was an increase in volumes of the thalamus, hippocampus, amygdala and pallidum, and a decrease in volumes of the caudate and nucleus accumbens. The putamen showed a decrease in boys bilaterally and an increase in girls in the left hemisphere. Heritability was high (>50%) for all structures - except for the left nucleus accumbens - with heritabilities ranging from 0.50 to 0.91 at age 9, and from 0.59 to 0.88 at age 12. There were no significant new genetic effects coming into play at age 12, and there was no evidence for genotype by sex interactions. These findings suggest that despite their sensitivity to environmental effects, the heritability of subcortical brain structures is high from childhood on, resembling estimates found in adult samples

    Domain dependent associations between cognitive functioning and regular voluntary exercise behavior

    No full text
    Regular exercise has often been suggested to have beneficial effects on cognition, but empirical findings are mixed because of heterogeneity in sample composition (age and sex); the cognitive domain being investigated; the definition and reliability of exercise behavior measures; and study design (e.g., observational versus experimental). Our aim was to scrutinize the domain specificity of exercise effects on cognition, while controlling for the other sources of heterogeneity. In a population based sample consisting of 472 males and 668 females (aged 10-86. years old) we administered the Computerized Neurocognitive Battery (CNB), which provided accuracy and speed measures of abstraction and mental flexibility, attention, working memory, memory (verbal, face, and spatial), language and nonverbal reasoning, spatial ability, emotion identification, emotion- and age differentiation, sensorimotor speed, and motor speed. Using univariate and multivariate regression models, CNB scores were associated with participants' average energy expenditure per week (weekly METhours), which were derived from a questionnaire on voluntary regular leisure time exercise behavior.Univariate models yielded generally positive associations between weekly METhours and cognitive accuracy and speed, but multivariate modeling demonstrated that direct relations were small and centered around zero. The largest and only significant effect size (β = 0.11, p < 0.001) was on the continuous performance test, which measures attention. Our results suggest that in the base population, any chronic effects of voluntary regular leisure time exercise on cognition are limited. Only a relation between exercise and attention inspires confidence

    No Evidence of Causal Effects of Blood Pressure on Cognition in the Population at Large

    No full text
    The large body of literature on the association between blood pressure (BP) and cognitive functioning has yielded mixed results, possibly due to the presence of non-linear effects across age, or because BP affects specific brain areas differently, impacting more on some cognitive skills than on others. If a robust association was detected among BP and specific cognitive tasks, the causal nature of reported associations between BP and cognition could be investigated in twin data, which allow a test of alternative explanations, including genetic pleiotropy. The present study first examines the association between BP and cognition in a sample of 1,140 participants with an age range between 10 and 86 years. Linear and quadratic effects of systolic BP (SBP) and diastolic BP (DBP) on cognitive functioning were examined for 17 tests across five functions. Associations were corrected for effects of sex and linear and quadratic effects of age. Second, to test a causal model, data from 123 monozygotic (MZ) twin pairs were analyzed to test whether cognitive functioning of the twins with the higher BP was different from that of the co-twins with lower BP. Associations between BP and cognitive functioning were absent for the majority of the cognitive tests, with the exception of a lower speed of emotion identification and verbal reasoning in subjects with high diastolic BP. In the MZ twin pair analyses, no effects of BP on cognition were found. We conclude that in the population at large, BP level is not associated with cognitive functioning in a clinically meaningful way
    corecore