19 research outputs found

    BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Get PDF
    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.Comment: 9 pages, 5 figures, Accepted for publication in The Astrophysical Journal on 5th November 201

    Design and fabrication of gas cell targets for laboratory astrophysics experiments on the Orion high-power laser facility

    Get PDF
    This paper describes the design and fabrication of a range of ‘gas cell’ microtargets produced by the Target Fabrication Group in the Central Laser Facility (CLF) for academic access experiments on the Orion laser facility at the Atomic Weapons Establishment (AWE). The experiments were carried out by an academic consortium led by Imperial College London. The underlying target methodology was an evolution of a range of targets used for experiments on radiative shocks and involved the fabrication of a precision machined cell containing a number of apertures for interaction foils or diagnostic windows. The interior of the cell was gas-filled before laser irradiation. This paper details the assembly processes, thin film requirements and micro-machining processes needed to produce the targets. Also described is the implementation of a gas-fill system to produce targets that are filled to a pressure of 0.1–1 bar. The paper discusses the challenges that are posed by such a target

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore