144 research outputs found

    Centre-of-mass separation in quantum mechanics: Implications for the many-body treatment in quantum chemistry and solid state physics

    Full text link
    We address the question to what extent the centre-of-mass (COM) separation can change our view of the many-body problem in quantum chemistry and solid state physics. It was shown that the many-body treatment based on the electron-vibrational Hamiltonian is fundamentally inconsistent with the Born-Handy ansatz so that such a treatment can never respect the COM problem. Born-Oppenheimer (B-O) approximation reveals some secret: it is a limit case where the degrees of freedom can be treated in a classical way. Beyond the B-O approximation they are inseparable in principle. The unique covariant description of all equations with respect to individual degrees of freedom leads to new types of interaction: besides the known vibronic (electron-phonon) one the rotonic (electron-roton) and translonic (electron-translon) interactions arise. We have proved that due to the COM problem only the hypervibrations (hyperphonons, i.e. phonons + rotons + translons) have true physical meaning in molecules and crystals; nevertheless, the use of pure vibrations (phonons) is justified only in the adiabatic systems. This fact calls for the total revision of our contemporary knowledge of all non-adiabatic effects, especially the Jahn-Teller effect and superconductivity. The vibronic coupling is responsible only for removing of electron (quasi)degeneracies but for the explanation of symmetry breaking and forming of structure the rotonic and translonic coupling is necessary.Comment: 39 pages, 11 sections, 3 appendice

    Natural Warm Inflation

    Full text link
    We derive the requirements that a generic axion-like field has to satisfy in order to play the role of the inflaton field in the warm inflation scenario. Compared to the parameter space in ordinary natural inflation models, we find that the parameter space in our model is enlarged. In particular, we avoid the problem of having an axion decay constant ff that relates to the Planck scale, which is instead present in the ordinary natural inflation models; in fact, our model can easily accommodate values of the axion decay constant that lie well below the Planck scale.Comment: 19 pages, 7 figures; version accepted in JCA

    Isocurvature forecast in the anthropic axion window

    Full text link
    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the "anthropic window" where the axion decay constant f_a >> 10^12 GeV and the initial misalignment angle Theta_i << 1. In a minimal Lambda-CDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to alpha < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f_a and H_I (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.Comment: 14 pages, 4 figures; v2: matches published versio

    Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields

    Get PDF
    Very-high energy photons emitted by distant cosmic sources are absorbed on the extragalactic background light (EBL) during their propagation. This effect can be characterized in terms of a photon transfer function at Earth. The presence of extragalactic magnetic fields could also induce conversions between very high-energy photons and hypothetical axion-like particles (ALPs). The turbulent structure of the extragalactic magnetic fields would produce a stochastic behaviour in these conversions, leading to a statistical distribution of the photon transfer functions for the different realizations of the random magnetic fields. To characterize this effect, we derive new equations to calculate the mean and the variance of this distribution. We find that, in presence of ALP conversions, the photon transfer functions on different lines of sight could have relevant deviations with respect to the mean value, producing both an enhancement or a suppression in the observable photon flux with respect to the expectations with only absorption. As a consequence, the most striking signature of the mixing with ALPs would be a reconstructed EBL density from TeV photon observations which appears to vary over different directions of the sky: consistent with standard expectations in some regions, but inconsistent in others.Comment: v2: 22 pages, 5 eps figures. Minor changes. A reference added. Matches the version published on JCA

    Axionic dark energy and a composite QCD axion

    Full text link
    We discuss the idea that the model-independent (MI) axion of string theory is the source of quintessential dark energy. The scenario is completed with a composite QCD axion from hidden sector squark condensation that could serve as dark matter candidate. The mechanism relies on the fact that the hidden sector anomaly contribution to the composite axion is much smaller than the QCD anomaly term. This intuitively surprising scenario is based on the fact that below the hidden sector scale Λh\Lambda_h there are many light hidden sector quarks. Simply, by counting engineering dimensions the hidden sector instanton potential can be made negligible compared to the QCD anomaly term.Comment: 9 pages, 7 figure

    Quark mass uncertainties revive KSVZ axion dark matter

    Full text link
    The Kaplan-Manohar ambiguity in light quark masses allows for a larger uncertainty in the ratio of up to down quark masses than naive estimates from the chiral Lagrangian would indicate. We show that it allows for a relaxation of experimental bounds on the QCD axion, specifically KSVZ axions in the 23μ2-3 \mueV mass range composing 100% of the galactic dark matter halo can evade the experimental limits placed by the ADMX collaboration.Comment: 9 pages, 5 figure

    Axion-like particle effects on the polarization of cosmic high-energy gamma sources

    Get PDF
    Various satellite-borne missions are being planned whose goal is to measure the polarization of a large number of gamma-ray bursts (GRBs). We show that the polarization pattern predicted by current models of GRB emission can be drastically modified by the existence of very light axion-like particles (ALPs), which are present in many extensions of the Standard Model of particle physics. Basically, the propagation of photons emitted by a GRB through cosmic magnetic fields with a domain-like structure induces photon-ALP mixing, which is expected to produce a strong modification of the original photon polarization. Because of the random orientation of the magnetic field in each domain, this effect strongly depends on the orientation of the photon line of sight. As a consequence, photon-ALP conversion considerably broadens the original polarization distribution. Searching for such a peculiar feature through future high-statistics polarimetric measurements is therefore a new opportunity to discover very light ALPs.Comment: Final version (21 pages, 8 eps figures). Matches the version published on JCAP. Added a Section on the effects of cosmic expansion on photon-ALP conversions. Figures modified to take into account this effect. References updated. Conclusions unchanged

    Mixed axion/neutralino cold dark matter in supersymmetric models

    Full text link
    We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter. The mixed axion/neutralino CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as \sim (f_a/N)/m_{axino}^{3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In mixed axion/neutralino CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.Comment: 31 pages including 21 figure

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia

    Constraints on the CMB temperature redshift dependence from SZ and distance measurements

    Full text link
    The relation between redshift and the CMB temperature, TCMB(z)=T0(1+z)T_{CMB}(z)=T_0(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the Λ\LambdaCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form TCMB(z)=T0(1+z)1βT_{CMB}(z)=T_0(1+z)^{1-\beta} to be β=0.004±0.016\beta=0.004\pm0.016 up to a redshift z3z\sim 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.Comment: 27 pages, 11 figure
    corecore