3,206 research outputs found

    In-plane Magnetic Field Dependent Magnetoresistance of Gated Asymmetric Double Quantum Wells

    Full text link
    We have investigated experimentally the magnetoresistance of strongly asymmetric double-wells. The structures were prepared by inserting a thin Al0.3_{0.3}Ga0.7_{0.7}As barrier into the GaAs buffer layer of a standard modulation-doped GaAs/Al0.3_{0.3}Ga0.7_{0.7}As heterostructure. The resulting double-well system consists of a nearly rectangular well and of a triangular well coupled by tunneling through the thin barrier. With a proper choice of the barrier parameters one can control the occupancy of the two wells and of the two lowest (bonding and antibonding) subbands. The electron properties can be further influenced by applying front- or back-gate voltage.Comment: 4 pages, 5 figures, elsart/PHYEAUTH macros; to be presented on the EP2DS-15 Conference in Nara, Japan. Revised version. To appear in Physica

    Coloured mulch as a weed control technology and yield booster for summer savory

    Get PDF
    An investigation into the effect of coloured mulch technology as a technique to control weeds when growing the essential oil plant, summer savory (Satureja hortensis) was made. As well as weed control, the effects on the production of crop biomass and essential oil content and quality were also considered. The mulch treatments produced significantly more biomass than either of the control treatments (which used no mulch either with or without herbicide). The white mulch treatment produced the greatest biomass, closely followed by the red mulch treatment. The blue mulch treatment was third in ranking, although not significantly greater than the black mulch. Estimates of the quantity of essential oil produced by each treatment followed a similar trend to that shown by biomass production

    Novel critical field in magneto-resistance oscillation of 2DEG in asymmetric GaAs/AlGaAs double wells measured as a function of the in-plane magnetic field

    Full text link
    We have investigated the magnetoresistance of strongly asymmetric double-well structures formed by a thin AlGaAs barrier grown far from the interface in the GaAs buffer of standard heterostructures. In magnetic fields oriented parallel to the electron layers, the magnetoresistance exhibits an oscillation associated with the depopulation of the higher occupied subband and with the field-induced transition into a decoupled bilayer. In addition, the increasing field transfers electrons from the triangular to rectangular well and, at high enough field value, the triangular well is emptied. Consequently, the electronic system becomes a single layer which leads to a sharp step in the density of electron states and to an additional minimum in the magnetoresistance curve.Comment: 3 pages, 3 figure

    Localization of Cortical Oscillations Induced by SCS Using Coherence

    Get PDF
    This paper suggests a method based on coherence analysis and scalp mapping of coherence suitable for more accurate localization of cortical oscillations induced by electric stimulation of the dorsal spinal cord (SCS), which were previously detected using spectral analysis. While power spectral density shows the increase of power during SCS only at small number of electrodes, coherence extends this area and sharpens its boundary simultaneously. Parameters of the method were experimentally optimized to maximize its reliability. SCS is applied to suppress chronic, intractable pain by patients, whom pharmacotherapy does not relieve. In our study, the pain developed in lower back and lower extremity as the result of unsuccessful vertebral discotomy, which is called failed-back surgery syndrome (FBSS). Our method replicated the results of previous analysis using PSD and extended them with more accurate localization of the area influenced by SCS

    Detection of Cortical Oscillations Induced by SCS Using Power Spectral Density

    Get PDF
    Chronic, intractable pain of lower back and lower extremity might develop as the result of unsuccessful surgery of back. This state called failed-back surgery syndrome (FBSS) cannot be effectively treated by pharmacotherapy. Electric stimulation of the dorsal spinal cord is applied to relieve the pain. According to the medical hypothesis, oscillatory activity, which might be related to the analgesic effects, may occur in the cortex during the stimulation. To confirm the presence of the SCS induced oscillations, a new method of detection was designed for this purpose. The analysis of EEG data was performed using power spectral density, confidence intervals, visualization and group statistic for its verification. Parameters of the method were experimentally optimized to maximize its reliability. During ongoing SCS, statistically significant changes were detected and localized at the stimulation frequency and/or its subharmonic or upper harmonic over central midline electrodes in eight patients

    Brownian motion in a non-homogeneous force field and photonic force microscope

    Full text link
    The Photonic Force Microscope (PFM) is an opto-mechanical technique based on an optical trap that can be assumed to probe forces in microscopic systems. This technique has been used to measure forces in the range of pico- and femto-Newton, assessing the mechanical properties of biomolecules as well as of other microscopic systems. For a correct use of the PFM, the force field to measure has to be invariable (homogeneous) on the scale of the Brownian motion of the trapped probe. This condition implicates that the force field must be conservative, excluding the possibility of a rotational component. However, there are cases where these assumptions are not fulfilled Here, we show how to improve the PFM technique in order to be able to deal with these cases. We introduce the theory of this enhanced PFM and we propose a concrete analysis workflow to reconstruct the force field from the experimental time-series of the probe position. Furthermore, we experimentally verify some particularly important cases, namely the case of a conservative or rotational force-field

    Electron magnetotransport in GaAs/AlGaAs superlattices with weak and strong inter-well coupling

    Full text link
    We report on magnetotransport measurements in two MBE-grown GaAs/AlGaAs superlattices formed by wide and narrow quantum wells and thin Si-doped barriers subject to tilted magnetic fields. It has been shown that illumination of the strongly coupled superlattice with narrow wells leads to reduction of its dimensionality from the 3D to 2D. The illumination-induced transition is revealed by remarkable change of magnetoresistance curves as compared to those measured before illumination. The experimental data along with tight-binding model calculations indicate that the illumination not only enhances the electron concentration but also suppresses the electron tunneling through the barriers.Comment: 3 pages, 3 figures, elsart/PHYEAUTH macros; presented on the LDSD 2007 Conference in the Caribbean Archipelago San Andres, Colombia. To be published as a special issue of Microelectronics Journal (Elsevier

    Magnetoresistance oscillations in GaAs/AlGaAs superlattices subject to in-plane magnetic fields

    Full text link
    The MBE-grown GaAs/AlGaAs superlattice with Si-doped barriers has been used to study a 3D-2D transition under the influence of the in-plane component of applied magnetic field. The longitudinal magnetoresistance data measured in tilted magnetic fields have been interpreted in terms of a simple tight-binding model. The data provide values of basic parameters of the model and make it possible to reconstruct the superlattice Fermi surface and to calculate the density of states for the lowest Landau subbands. Positions of van Hove singularities in the DOS agree excellently with magnetoresistance oscillations, confirming that the model describes adequately the magnetoresistance of strongly coupled semiconductor superlattices.Comment: 4 pages, 3 figures, elsart/PHYEAUTH macros; presented on the EP2DS-16 Conference in Albuquerque, New Mexico USA. To be published in Physica

    Trilostane Treatment of Canine Alopecia X in an American Pit Bull Terrier

    Full text link
    This paper describes the case of a one-year-old female American Pit Bull Terrier, presented with the history of progressive baldness. The initial clinical signs were demonstrated by symmetric, primarily non-pruritic alopecia that began in the perineal, genital, and ventral abdominal regions and propagated cranially to the thorax and to the neck. Based on physical and dermatological examination, laboratory findings, and results of skin biopsy, a hormone-responsive dermatosis was diagnosed. Once hypothyroidism and hyperadrenocorticism were ruled out, with the help of hormonal tests, the diagnosis was specified as alopecia X. The first treatment option recommended for the patient and subsequently completed was ovariohysterectomy. After three months, the owner reported improvement; the dog was almost covered with hair. The patient was presented again six months later, showing almost the same dermatological symptoms, which, however, were of a more striking character than before ovariohysterectomy. Again a series of hormonal tests was carried out. Considering the elevated basal and post-adrenocorticothropin stimulation progesterone concentrations, the final aetiology of the disease was determined as an adrenal sex hormone imbalance. Therefore trilostan therapy was initiated. The trilostan dosage of 8 mg/kg/day was divided and given 2 times daily. This treatment led to complete hair regrowth in the dog within four months. No adverse effects associated with trilostane were recognized
    corecore