78 research outputs found

    Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (10(6) cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10x10(6), 25x10(6) and 50x10(6), were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice.Our results showed that a cell dose of 25x10(6) cells significantly increased lifespan of mice by 20-25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25x10(6) cells, although prevalent human Th1 cytokines were indicated in mice with 50x10(6) cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25x10(6) (mainly) and 10x10(6) cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25x10(6) cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25x10(6) cells.These results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response

    Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS

    Get PDF
    Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies

    Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke

    Get PDF
    Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient

    Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS

    Get PDF
    Background: The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease. Methodology/Principal Findings: Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage. Conclusions/Significance: Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease

    Method of prenatal administration of mammalian umbilical cord stem cells for the intrauterine treatment of sanfilippo syndrome

    Get PDF
    A method of treating a fetus or embryo suspected of having a congenital condition that involves an abnormal or missing protein, the method has the steps of a. providing a plurality of human umbilical cord blood in a form suitable for intravenous administration; a b. administering the human umbilical cord blood cells to a mother carrying a fetus of embryo suspected of having said congenital condition. Such congenital conditions include Sanfilippo\u27s syndrome, Hunter\u27s syndrome, Hurler\u27s syndrome, Tay-Sachs disease, Gaucher\u27s disease, von Gierke\u27s disease, Pompes disease, Cori disease, Andersen disease, McArdle\u27s disease, Hers disease, Tauri\u27s disease or Type IX glycogen storage disease

    Plasma Derived from Human Umbilical Cord Blood: Potential Cell-additive or Cell-substitute Therapeutic for Neurodegenerative Diseases

    No full text
    Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP\u27s potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases

    Plasma Derived from Human Umbilical Cord Blood: Potential Cell-additive or Cell-substitute Therapeutic for Neurodegenerative Diseases

    No full text
    Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP\u27s potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases

    Plasma derived from human umbilical cord blood for the treatment of neurodegenerative disorders

    No full text
    A method of treating neurodegenerative diseases using hUCB plasma is presented herein. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the non-responders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggest that the use of hUCB plasma alone, or with stem cells, may prove useful as a therapeutic in ALS patients. hUCB plasma was shown to increase therapeutic efficacy of MNCs as well as decrease apoptosis of MNCs. The cytokine profile of hUCB plasma supports its usefulness as a sole therapeutic as well as an additive to MNCs

    Plasma derived from human umbilical cord blood for the treatment of neurodegenerative disorders

    No full text
    A method of treating neurodegenerative diseases using hUCB plasma is presented herein. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the non-responders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggest that the use of hUCB plasma alone, or with stem cells, may prove useful as a therapeutic in ALS patients. hUCB plasma was shown to increase therapeutic efficacy of MNCs as well as decrease apoptosis of MNCs. The cytokine profile of hUCB plasma supports its usefulness as a sole therapeutic as well as an additive to MNCs
    corecore