64 research outputs found

    Endovascular treatments for ischemic stroke: Present status and prospects

    Get PDF
    Endovascular treatments for ischemic stroke (IS) are coming into clinical practice and, as shown by recent investigations, have good prospects. These treatments for IS make it possible to expand indications for revascularization and to create prerequisite for improving the outcomes of treatment.Interventional treatments for IS should not be set off against intravenous thrombolytic therapy (ITT); it is necessary to seek their reasonable sharing. The promising directions in the development of ITT and endovascular revascularization (EVR) for IS are to upgrade tools and to choose the safest and most effective constructions, as well as to identify target patient groups needing these treatment options based on the prediction of the efficacy of these techniques with consideration for clinical findings, the pattern of a lesion, and radiological data (including estimates of perfusion, ischemic core-penumbra relationships, and collateral blood supply intensity).The paper discusses the present status and prospects of EVR of cerebrovascular arteries, its indications, and basic procedures

    Π’Π›Π˜Π―ΠΠ˜Π• Π“Π›Π£Π‘ΠžΠšΠžΠ™ ΠΠΠ•Π‘Π’Π•Π—Π˜Π˜ НА Π’ΠžΠ—ΠΠ˜ΠšΠΠžΠ’Π•ΠΠ˜Π• ΠŸΠžΠ‘Π›Π•ΠžΠŸΠ•Π ΠΠ¦Π˜ΠžΠΠΠžΠ™ ΠšΠžΠ“ΠΠ˜Π’Π˜Π’ΠΠžΠ™ Π”Π˜Π‘Π€Π£ΠΠšΠ¦Π˜Π˜

    Get PDF
    The profound deepening of medicamentous sleep down to the burst-suppression electroencephalography pattern is used to provide medication-based protection of brain during preventive temporary clipping of the major arteries when performing surgery due to cerebral aneurysms. There is no consensus about the effect of profound suppression of electrobiological activity on the development of post-operative cognitive dysfunction. The goal: to evaluate the impact of anesthesia with the burst-suppression electroencephalography pattern on the post-operative cognitive status of the patients with no cerebral disorders. Subjects and methods. 30 patients were enrolled into the prospective randomized study, they all had surgeries due to degenerative spinal diseases. All patients were divided into two groups. Anesthesia in the main group (Group 1) differed from the one in the control group (Group 2); it included administration of propofol till achieving suppression of the electrobiological activity of burst-suppression electroencephalography pattern during 15 minutes. Prior to the surgery and in 4 days after it, all patients had neuro-psychological tests using Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB) and numbers memorization techniques (NMT). Results. When testing in 4 days after surgery, results in the patients from Group 1 did not differ from pre-operative results of MoCA (Mebefore =Β 28, Meafter= 28, Z = 0.714, p = 0.476), FAB (Mebefore = 18, Meafter = 18, Z = 0.592, p = 0.554), memorization of numbers in the direct order (Mebefore = 18, Meafter = 18, Z = 0.178, p = 0.859) and in the reverse order (Mebefore = 18, Meafter = 18, Z = 0.548, p = 0.583). The results of the post-operative testing in Group 2 were compatible with pre-operative results of (Mebefore = 18, Meafter = 18, Z = 0.459, p = 0.646), FAB (Mebefore = 18, Meafter = 18, Z =Β 1.348, p =Β 0.178), memorization of numbers in the direct order (Mebefore = 18, Meafter = 18, Z = 0.21, p = 0.843) and in the reverse order (Mebefore =Β 18, Meafter =Β 18, Z = 0.809, p = 0.418). None of the tests detected significant differences between the Groups (U = 88, p = 0.319, Z = 0.995 for MoCA; UΒ =Β 102.5, p = 0.644, Z = 0.394 for FAB; U = 92.0, p = 0.407, Z = -0.829 for memorization of numbers in the direct order, and U = 33.5, p = 0.62, ZΒ =Β 0.572 for memorization of numbers in the reverse order). Conclusion. Anesthesia with burst-suppression electroencephalography pattern as a model of medication-based cerebral protection during temporary clipping of the major arteries does not cause the deterioration of cognitive status in the patients who had no cerebral pathology initially. Для ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΡ€Π΅Π²Π΅Π½Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ клипирования ΠΌΠ°Π³ΠΈΡΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ ΠΏΡ€ΠΈ опСрациях ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Π΅Π²Ρ€ΠΈΠ·ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠ³ΠΎ сна Π΄ΠΎ появлСния Π½Π° элСктроэнцСфалограммС ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β». НСт Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ мнСния Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ влияния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ угнСтСния биоэлСктричСской активности Π½Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ послСопСрационной ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ дисфункции. ЦСль: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС анСстСзии с элСктроэнцСфалографичСским ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠΌ Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» Π½Π° послСопСрационный ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΉ статус ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ проспСктивном Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ исслСдовании участвовали 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ»ΠΈ хирургичСскоС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Π΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ°. ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. АнСстСзия Π² основной Π³Ρ€ΡƒΠΏΠΏΠ΅ (1-я Π³Ρ€ΡƒΠΏΠΏΠ°) ΠΎΡ‚Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ ΠΎΡ‚ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ (2-я Π³Ρ€ΡƒΠΏΠΏΠ°) Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠΏΠΎΡ„ΠΎΠ»Π° Π΄ΠΎ появлСния Π² биоэлСктричСской активности Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 15 ΠΌΠΈΠ½. ΠŸΠ΅Ρ€Π΅Π΄ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ Π½Π° 4-Π΅ сут послС Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° всСм ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ нСйропсихологичСскоС тСстированиС с использованиСм ΠœΠΎΠ½Ρ€Π΅Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠ°Π»Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ психичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (MoCA), Π±Π°Ρ‚Π°Ρ€Π΅ΠΈ тСстов для ΠΎΡ†Π΅Π½ΠΊΠΈ Π»ΠΎΠ±Π½ΠΎΠΉ дисфункции (FAB) ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ запоминания Ρ†ΠΈΡ„Ρ€. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ обслСдовании Π½Π° 4-Π΅ сут послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π² 1-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΎΡ‚ ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСстов MoCA (MeΠ΄ΠΎ = 28, MeпослС = 28, Z = 0,714, p = 0,476), FAB (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,592, p = 0,554), запоминания Ρ†ΠΈΡ„Ρ€ Π² прямом (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,178, p = 0,859) ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,548, p = 0,583). Π’ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ послСопСрационного обслСдования Π±Ρ‹Π»ΠΈ сопоставимы с ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ тСстов MoCA (MeΠ΄ΠΎ = 18, MeпослС = 18, ZΒ =Β 0,459, p = 0,646), FAB (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 1,348, p = 0,178), запоминания Ρ†ΠΈΡ„Ρ€ Π² прямом (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,21, p = 0,843) ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,809, p = 0,418). ΠœΠ΅ΠΆΠ΄Ρƒ 1-ΠΉ ΠΈ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ Π½Π΅ выявлСно Π½ΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ (U = 88, p = 0,319, Z = 0,995 для MoCA; U = 102,5, p = 0,644, Z = 0,394 для FAB; U = 92,0, p = 0,407, Z = -0,829 для запоминания Π² прямом ΠΈ U = 33,5, p = 0,62, Z = 0,572 для запоминания Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС). Π’Ρ‹Π²ΠΎΠ΄. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ анСстСзии с элСктроэнцСфалографичСским ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠΌ Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» ΠΊΠ°ΠΊ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ клипирования ΠΌΠ°Π³ΠΈΡΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ статуса ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· исходной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°.

    High-field magnetic structure of the triangular antiferromagnet RbFe(MoO4)2

    Get PDF
    The magnetic H βˆ’ T phase diagram of a quasi-two-dimensional antiferromagnet RbFe(MoO4 )2 (S = 5/2) with an equilateral triangular lattice structure is studied with 87Rb NMR and neutron-diffraction techniques. This combination of experimental techniques allows us to determine the ordered components of the magnetic moments on the Fe3+ ions within various high-field phasesβ€”the Y, UUD, V, and fan structures, stabilized in the compound by the in-plane magnetic field. It is also established that the transition from the V to the fan phase is of first order, whereas the transition from the fan phase to the polarized paramagnetic phase is continuous. An analysis of the NMR spectra shows that the high-field fan phase of RbFe(MoO4 )2 can be successfully described by a periodic commensurate oscillation of the magnetic moments around the field direction in each Fe3+ layer combined with an incommensurate modulation of the magnetic structure perpendicular to the layers

    New high magnetic field phase of the frustrated S=1/2S=1/2 chain compound LiCuVO4_4

    Full text link
    Magnetization of the frustrated S=1/2S=1/2 chain compound LiCuVO4_4, focusing on high magnetic field phases, is reported. Besides a spin-flop transition and the transition from a planar spiral to a spin modulated structure observed recently, an additional transition was observed just below the saturation field. This newly observed magnetic phase is considered as a spin nematic phase, which was predicted theoretically but was not observed experimentally. The critical fields of this phase and its dM/dH curve are in good agreement with calculations performed in a microscopic model (M. E. Zhitomirsky and H. Tsunetsugu, preprint, arXiv:1003.4096v2).Comment: 5 pages, 4 figure

    Magnetic properties and revisited exchange integrals of the frustrated chain cuprate PbCuSO4_4(OH)2_2 - linarite

    Full text link
    We present a detailed study in the paramagnetic regime of the frustrated ss = 1/2 spin-compound linarite, PbCuSO4_4(OH)2_2, with competing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions. Our data reveal highly anisotropic values for the saturation field along the crystallographic main directions, with ∼\sim 7.6, ∼\sim 10.5 and ∼\sim 8.5\,T for the aa, bb, and cc axes, respectively. In the paramagnetic regime, this behavior is explained mainly by the anisotropy of the \textit{g}-factor but leaving room for an easy-axis exchange anisotropy. Within the isotropic J1J_1-J2J_2 spin model our experimental data are described by various theoretical approaches yielding values for the exchange interactions J1J_1 ∼\sim -100\,K and J2J_2 ∼\sim 36\,K. These main intrachain exchange integrals are significantly larger as compared to the values derived in two previous studies in the literature and shift the frustration ratio Ξ±=J2/∣J1∣\alpha = J_2/|J_1| β‰ˆ\approx 0.36 of linarite closer to the 1D critical point at 0.25. Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements further prove that the static susceptibility is dominated by the intrinsic spin susceptibility. The Knight shift as well as the broadening of the linewidth in ESR and NMR at elevated temperatures indicate a highly frustrated system with the onset of magnetic correlations far above the magnetic ordering temperature TNT_\mathrm{N} = 2.75(5)\,K, in agreement with the calculated exchange constants.Comment: 18 pages, 18 figure

    Π Π΅Ρ„Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΉ эпилСптичСский статус послС клипирования Π°Π½Π΅Π²Ρ€ΠΈΠ·ΠΌΡ‹ срСднСй ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ (клиничСскоС наблюдСниС)

    Get PDF
    We present the management features for the refractory epileptic status in a patient after surgical treatment of unruptured cerebral aneurysm and no epileptic prehistory. The role of continuous electroencephalographic monitoring in adjusting the rate of drugs administration for general anesthesia in the treatment of this condition is also described.ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° дСмонстрация ΠΈ обсуТдСниС особСнностСй вСдСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠΈ с Ρ€Π΅Ρ„Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ эпилСптичСским статусом послС хирургичСского лСчСния Π½Π΅Ρ€Π°Π·ΠΎΡ€Π²Π°Π²ΡˆΠ΅ΠΉΡΡ Π°Π½Π΅Π²Ρ€ΠΈΠ·ΠΌΡ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π±Π΅Π· эпилСптичСского Π°Π½Π°ΠΌΠ½Π΅Π·Π°. Показана Ρ€ΠΎΠ»ΡŒ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ элСктроэнцСфалографичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° для ΠΏΠΎΠ΄Π±ΠΎΡ€Π° скорости ввСдСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для ΠΎΠ±Ρ‰Π΅ΠΉ анСстСзии ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ состояния
    • …
    corecore