48 research outputs found

    THE DEVELOPMENT OF AN ADOLESCENT'S PHYSICAL, EMOTIONAL AND SOCIAL BALANCE AND INCLUSIVE EDUCATION

    Get PDF
    The study summarises scientific and theoretical information that provides the basis for the use of telerehabilitation methods in the promotion of the development of physical, emotional and social balance for 12 – 13 year old adolescents in the context of inclusive education. The study describes the efficiency of modern technologies for the improvement of the physical and mental health of adolescent learners, as well as suggests services of social rehabilitation which could be provided from the distance. The target audiences of the study are teachers with different professional competence, researchers and the education policy makers

    Новый ΡˆΡ‚Π°ΠΌΠΌ уксуснокислых Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Komagataeibacter xylinus B-12068 – ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Ρ‹ для биомСдицинского примСнСния

    Get PDF
    The strain of acetic acid bacteria Komagataeibacter xylinus B-12068, producing of bacterial cellulose (BC), was isolated and described. The effects of cultivation conditions (carbon sources, temperature, and pH) on BC production and properties were studied in surface and submerged cultures. Glucose was found to be the best substrate for BC production among the sugars tested; ethanol concentration of 3 % (w/v) enhanced the productivity of BC. The highest BC yield (up to 17.0 g/L) was obtained under surface static cultivation conditions, in the modified HS medium supplemented with ethanol, at pH 3.9, after 7 days of cultivation in the thinnest layer of the mediumΠ’Ρ‹Π΄Π΅Π»Π΅Π½ ΠΈ описан ΡˆΡ‚Π°ΠΌΠΌ уксуснокислых Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Komagataeibacter xylinus B-12068, ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Ρ‹ (Π‘Π¦). Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС условий выращивания ΡˆΡ‚Π°ΠΌΠΌΠ° (источники ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΈ рН) Π² повСрхностном ΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄ ΠΈ свойства Π‘Π¦. Показано, Ρ‡Ρ‚ΠΎ ΠΈΠ· спСктра сахаров глюкоза являСтся Π»ΡƒΡ‡ΡˆΠΈΠΌ субстратом для получСния Π‘Π¦; этанол Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 3 % (w/v) стимулируСт синтСз Π‘Π¦. Максимальная продукция Π‘Π¦ (Π΄ΠΎ 17.0 Π³/Π») ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΠΏΡ€ΠΈ повСрхностном статичСском ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΡˆΡ‚Π°ΠΌΠΌΠ° Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 7 сут ΠΏΡ€ΠΈ рН 3.9 Π½Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ срСдС HS с Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ этанола ΠΏΡ€ΠΈ минимальном слоС срСд

    The Effect of Different Concentrations of Energia-M Growth Regulator on the Growth and Development of SolΓ‘num tuberΓ³sum L. plants

    No full text
    The analysis of the available bibliographic data on the influence of silicon and its compounds on physiological processes in plants was carried out. The purpose of the work was to determine the effect of the organosilicon growth regulator Energia-M in concentrations of 10, 50, 80 mg/l on the growth and productivity of the early-ripening potato of the Zhukovsky cultivar grown on grey forest soils in a greenhouse. Low concentrations of Energia-M of 10, 50 mg/l did not influence the growth and growth activity significantly. Energia-M in a concentration of 80 mg/l increased the growth activity of the potato plants considerably. One of the objectives of the research was to study the antioxidant properties of the growth regulator Energia-M for SolΓ‘num tuberΓ³sum plants. Treatment of SolΓ‘num tuberΓ³sum with low concentrations of the organosilicon growth regulator Energia-M had little effect on the catalase activity in leaves and tubers, peroxidase activity decreased. When treating the SolΓ‘num tuberΓ³sum plants with a high concentration of the growth regulator Energy-M, 80 mg/l, the activity of catalase and peroxidase increased by 1.21 times. This pattern indicates the stimulation of metabolic processes in SolΓ‘num tuberΓ³sum plants grown on the grey forest soils of the Orel region with the application of the Energia-M growth regulator

    Fungicidal activity of slow-release P(3HB)/TEB formulations in wheat plant communities infected by Fusarium moniliforme

    Get PDF
    Fungicidal activity of experimental tebuconazole (TEB) formulations was investigated in laboratory soil ecosystems in wheat plant communities infected by Fusarium moniliforme. TEB was embedded in the matrix of poly-3-hydroxybutyrate, shaped as films and microgranules. These formulations were buried in the soil with wheat plants, and their efficacy was compared with that of commercial formulation Raxil and with the effect of pre-sowing treatment of seeds. In the experiment with the initially infected seeds and a relatively low level of natural soil infection caused by Fusarium fungi, the effects of the experimental P(3HB)/TEB formulations and Raxil were comparable. However, when the level of soil infection was increased by adding F. moniliforme spores, P(3HB)/TEB granules and films reduced the total counts of fungi and the abundance of F. moniliforme more effectively than Raxil. Seed treatment or soil treatment with Raxil solution showed an increase in the percentage of rotdamaged roots in the later stages of the experiment. In the early stage (between days 10 and 20), the percentage of rotdamaged roots in the soil with TEB embedded in the slowly degraded P(3HB) matrix was similar to that in the soil with Raxil. However, the efficacy of P(3HB)/TEB formulations lasted longer, and in later stages (between days 20 and 30), the percentage of rot-damaged roots in that group did not grow. In experiments with different TEB formulations and, hence, different fungicidal activities, the increase in plant biomass was 15–17 to 40–60% higher than in the groups where TEB was applied by using conventional techniques

    Microbiological Degradation of Poly(3-Hydroxybutyrate) Films in Different Edaphoclimatic Zones of Siberia

    Get PDF
    ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° обращСния с пластиковыми ΠΎΡ‚Ρ…ΠΎΠ΄Π°ΠΌΠΈ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ обостряСтся ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ комплСксного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ. Π—Π°ΠΌΠ΅Π½Π° синтСтичСских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ископаСмого Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, Π½Π° ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎ-Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ объСм стойких ΠΊ Π±ΠΈΠΎΡ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ², ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ выбросы CO2 ΠΈ количСство ΠΏ отрСбляСмой э Π½Π΅Ρ€Π³ΠΈΠΈ. Однако Ρ‚Π΅ΠΌΠΏΡ‹ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдС зависят ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², поэтому Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… условиях Π΄Π°ΠΆΠ΅ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒΡΡ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ врСмя. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° влияния ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-климатичСских ΠΈ микробиологичСских характСристик Π½Π° Ρ‚Π΅ΠΌΠΏΡ‹ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈΠ· Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° ΠΏΠΎΠ»ΠΈ(3- гидроксибутирата) [П(3Π“Π‘)] ΠΏΡ€ΠΈ экспозиции Π² сибирских ΠΏΠΎΡ‡Π²Π°Ρ…: Π΄Π΅Ρ€Π½ΠΎΠ²ΠΎ-ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½ΠΎΠΉ, ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΈ Π°Π³Ρ€ΠΎΠ³Π΅Π½Π½ΠΎ-ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ. Анализ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚, ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π² ΠΏΠΎΡ‡Π²Π°Ρ… Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ, ΡƒΠ²Π»Π°ΠΆΠ½Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ, значСниями рН, Π±ΠΈΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΎΠ±ΠΈΠ»ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠ±Ρ‹Π»ΠΈ массы ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈΠ· П(3Π“Π‘) Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ количСства осадков ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ содСрТания гумуса Π² ΠΏΠΎΡ‡Π²Π΅. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚Π΅ΠΌΠΏΡ‹ ΡƒΠ±Ρ‹Π»ΠΈ массы ΠΏΠ»Π΅Π½ΠΎΠΊ – 0,63Β±0,09 ΠΈ 0,93Β±0,013 ΠΌΠ³βˆ™ΡΡƒΡ‚β€‘1 – Π±Ρ‹Π»ΠΈ Π· арСгистрированы Π² Π°Π³Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΏ ΠΎΡ‡Π²Π°Ρ…. Показано отсутствиС коррСляции ΡƒΠ±Ρ‹Π»ΠΈ массы ΠΏΠ»Π΅Π½ΠΎΠΊ с ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ЀилогСнСтичСский Π°Π½Π°Π»ΠΈΠ· выявил отличия Π² Π½Π°Π±ΠΎΡ€Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… дСструкторов Π² Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠ°Ρ… ΠΏΠΎΡ‡Π²The urgency of handling plastic waste is escalating every year and the problem can be only solved using an integrated approach. Replacing non-degradable materials synthesised from fossil fuels with carbon-neutral biopolymers can reduce non-biodegradable waste, CO2 emissions and energy use. However, even completely biodegradable biopolymer materials will stay in the environment for a long time since the rate of their biodegradation depends on many factors. The paper evaluates the influence of edaphoclimatic and microbiological factors on the biodegradation rate of biopolymer films from the poly(3-hydroxybutyrate) [P(3HB)] when exposed to soddy-carbonate, cryogenic, and agrogenically transformed Siberian soils. A principal component analysis showed that in different soils, characterised by specific temperature, moisture content, pH values, biogenicity and abundance of microorganisms, the kinetics of mass loss of P(3HB)-films were primarily determined by the temperature- precipitation ratio and it increased as the content of humus in soil increased. The maximum rates of film mass loss of 0.63 Β± 0.09 and 0.93 Β± 0.01 mg βˆ™ day-1 were detected in agrogenic soils. No correlation between mass loss of the films and the total number of microorganisms was found. A phylogenetic analysis revealed differences in the composition of primary P(3HB)-degrading microorganisms in different soil type
    corecore