5 research outputs found

    The impact of Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation: a natural long-term in situ experiment in a planted pine forest

    Get PDF
    Increased anthropogenic pressure including intensification of agricultural activities leads to long-term decline of natural biotopes, with planted forests often considered as promising compensatory response, although reduced biodiversity and ecosystem stability represent their common drawbacks. Here we present a complex investigation of the impact of a large Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation in a planted Scots pine forest representing a natural in situ experiment on an engineered ecosystem. After settling around 2006, the colony expanded for 15 years, leading to the intensive deposition of nutrients with feces, food remains and feather thereby considerably altering the local soil biogeochemistry. Thus, lower pH levels around 4.5, 10- and 2-fold higher concentrations of phosphorous and nitrogen, as well as 1.2-fold discrepancies in K, Li, Mn, Zn and Co., respectively, compared to the surrounding control forest area could be observed. Unaltered total organic carbon (Corg) suggests repressed vegetation, as also reflected in the vegetation indices obtained by remote sensing. Moreover, reduced soil microbial diversity with considerable alternations in the relative abundance of Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Gemmatimonadota, Chujaibacter, Rhodanobacter, and Bacillus has been detected. The above alterations to the ecosystem also affected climate stress resilience of the trees indicated by their limited recovery from the major 2010 drought stress, in marked contrast to the surrounding forest (p = 3∙10−5). The complex interplay between geographical, geochemical, microbiological and dendrological characteristics, as well as their manifestation in the vegetation indices is explicitly reflected in the Bayesian network model. Using the Bayesian inference approach, we have confirmed the predictability of biodiversity patterns and trees growth dynamics given the concentrations of keynote soil biogeochemical alternations with correlations R > 0.8 between observations and predictions, indicating the capability of risk assessment that could be further employed for an informed forest management

    A Comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a Microarray-Based Molecular Assay for the Detection of Drug Resistance in Clinical <i>Mycobacterium tuberculosis</i> Isolates in Moscow, Russia

    No full text
    <div><p>Background</p><p>The goal of this study was to compare the consistency of three assays for the determination of the drug resistance of <i>Mycobacterium tuberculosis</i> (MTB) strains with various resistance profiles isolated from the Moscow region.</p><p>Methods</p><p>A total of 144 MTB clinical isolates with a strong bias toward drug resistance were examined using Bactec MGIT 960, Sensititre MycoTB, and a microarray-based molecular assay TB-TEST to detect substitutions in the <i>rpoB</i>, <i>katG</i>, <i>inhA</i>, <i>ahpC</i>, <i>gyrA</i>, <i>gyrB</i>, <i>rrs</i>, <i>eis</i>, and <i>embB</i> genes that are associated with resistance to rifampin, isoniazid, fluoroquinolones, second-line injectable drugs and ethambutol.</p><p>Results</p><p>The average correlation for the identification of resistant and susceptible isolates using the three methods was approximately 94%. An association of mutations detected with variable resistance levels was shown. We propose a change in the breakpoint minimal inhibitory concentration for kanamycin to less than 5 μg/ml in the Sensititre MycoTB system. A pairwise comparison of the minimal inhibitory concentrations (MICs) of two different drugs revealed an increased correlation in the first-line drug group and a partial correlation in the second-line drug group, reflecting the history of the preferential simultaneous use of drugs from these groups. An increased correlation with the MICs was also observed for drugs sharing common resistance mechanisms.</p><p>Conclusions</p><p>The quantitative measures of phenotypic drug resistance produced by the Sensititre MycoTB and the timely detection of mutations using the TB-TEST assay provide guidance for clinicians for the choice of the appropriate drug regimen.</p></div

    MIC distributions of the clinical isolates characterized using the MGIT and TB-TEST assays.

    No full text
    <p>Resistant and susceptible isolates based on the MGIT results are indicated by the red and green lines, respectively. The light-red and light-green bars represent the numbers of resistant and susceptible isolates with mutations detected by the TB-TEST. The MGIT was not performed for rifabutin (RFB); therefore, only the distributions of all isolates and the isolates with mutations are shown.</p
    corecore