17 research outputs found

    Tuning the Condensation Degree of {Fe<sup>III</sup><sub><i>n</i></sub>} Oxo Clusters via Ligand Metathesis, Temperature, and Solvents

    No full text
    Trinuclear μ<sub>3</sub>-oxo-centered iron­(III) isobutyrate clusters readily react with polyalcohol organic ligands under one-pot synthesis conditions. Depending on the ligand, solvent, and temperature, a range of hexa-, dodeca-, and doicosanuclear iron­(III) oxo-hydroxo condensation products, isolated as (mdeaH<sub>3</sub>)<sub>2</sub>[Fe<sub>6</sub>O­(thme)<sub>4</sub>Cl<sub>6</sub>]·0.5­(MeCN)·0.5­(H<sub>2</sub>O) (<b>1</b>), [Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>(teda)<sub>4</sub>(N<sub>3</sub>)<sub>4</sub>(MeO)<sub>4</sub>]­N<sub>3</sub>(NO<sub>3</sub>)<sub>0.5</sub>(MeO)<sub>0.5</sub>·2.5­(H<sub>2</sub>O) (<b>2</b>), [Fe<sub>12</sub>O<sub>6</sub>(teda)<sub>4</sub>Cl<sub>8</sub>]·6­(CHCl<sub>3</sub>) (<b>3</b>), [Fe<sub>22</sub>O<sub>16</sub>(OH)<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>18</sub>(bdea)<sub>6</sub>(EtO)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2­(EtOH)·5­(MeCN)·6­(H<sub>2</sub>O) (<b>4</b>), and [Fe<sub>22</sub>O<sub>14</sub>(OH)<sub>4</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>18</sub>(mdea)<sub>6</sub>(EtO)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·EtOH·H<sub>2</sub>O (<b>5</b>), where tedaH<sub>4</sub> = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetrakis­(2-hydroxyethyl)­ethylenediamine; thmeH<sub>3</sub> = 1,1,1-tris­(hydroxymethyl)­ethane; mdeaH<sub>2</sub> = <i>N</i>-methyldiethanolamine; and bdeaH<sub>2</sub> = <i>N</i>-butyldiethanolamine. Complete carboxylate metathesis in the {Fe<sub>3</sub>} precursor complexes by thme<sup>3–</sup> or teda<sup>4–</sup> and the agglomeration of the formed species under solvothermal conditions afforded carboxylate-free {Fe<sub>6</sub>} product (<b>1</b>) in MeCN/CH<sub>2</sub>Cl<sub>2</sub> or {Fe<sub>12</sub>} complexes (<b>2</b> and <b>3</b>) in MeOH/EtOH and CHCl<sub>3</sub>/thf, respectively (thf = tetrahydrofuran). Single-crystal X-ray diffraction analyses revealed that <b>1</b> contains a [Fe<sub>6</sub>O­(thme)<sub>4</sub>Cl<sub>6</sub>]<sup>2–</sup> cluster anion with a Lindqvist-type {Fe<sub>6</sub>(μ<sub>6</sub>-O)} core motif, charge-compensated by two protonated mdeaH<sub>3</sub><sup>+</sup> cations. <b>2</b> comprises a [Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>(teda)<sub>4</sub>­(N<sub>3</sub>)<sub>4</sub>(MeO)<sub>4</sub>]<sup>2+</sup> cation with a {Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>}<sup>26+</sup> core, whereas <b>3</b> contains a charge-neutral [Fe<sub>12</sub>O<sub>6</sub>(teda)<sub>4</sub>(Cl)<sub>8</sub>] complex with an {Fe<sub>12</sub>O<sub>6</sub>}<sup>24+</sup> core. Finally, employing flexible bdeaH<sub>2</sub> or mdeaH<sub>2</sub> ligands under soft reaction conditions afforded giant {Fe<sub>22</sub>} oxo-hydroxo complexes (<b>4</b> and <b>5</b>) with a central {Fe<sub>6</sub>} layer sandwiched between two outer {Fe<sub>8</sub>} groups. Magnetic studies of <b>1</b>–<b>5</b> revealed strong antiferromagnetic coupling between the Fe<sup>III</sup> spin centers in all clusters

    Ultralarge 3d/4f Coordination Wheels: From Carboxylate/Amino Alcohol-Supported {Fe<sub>4</sub>Ln<sub>2</sub>} to {Fe<sub>18</sub>Ln<sub>6</sub>} Rings

    No full text
    A family of wheel-shaped charge-neutral heterometallic {Fe<sup>III</sup><sub>4</sub>Ln<sup>III</sup><sub>2</sub>}- and {Fe<sup>III</sup><sub>18</sub>M<sup>III</sup><sub>6</sub>}-type coordination clusters demonstrates the intricate interplay of solvent effects and structure-directing roles of semiflexible bridging ligands. The {Fe<sub>4</sub>Ln<sub>2</sub>}-type compounds [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>]·2­(EtOH), Ln = Dy (<b>1a</b>), Er (<b>1b</b>), Ho (<b>1c</b>); [Fe<sub>4</sub>Tb<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>] (<b>1d</b>); [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>]·2­(CH<sub>2</sub>Cl<sub>2</sub>), Ln = Dy (<b>2a</b>), Er (<b>2b</b>); [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>4</sub>­(N<sub>3</sub>)<sub>6</sub>(Htea)<sub>4</sub>]·2­(EtOH)·2­(CH<sub>2</sub>Cl<sub>2</sub>), Ln = Dy (<b>3a</b>), Er (<b>3b</b>) and the {Fe<sub>18</sub>M<sub>6</sub>}-type compounds [Fe<sub>18</sub>M<sub>6</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>12</sub>­(Htea)<sub>18</sub>(tea)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]·<i>n</i>(solvent), M = Dy (<b>4</b>, <b>4a</b>), Gd (<b>5</b>), Tb (<b>6</b>), Ho (<b>7</b>), Sm (<b>8</b>), Eu (<b>9</b>), and Y (<b>10</b>) form in ca. 20–40% yields in direct reaction of trinuclear Fe<sup>III</sup> pivalate or isobutyrate clusters, lanthanide/yttrium nitrates, and bridging triethanolamine (H<sub>3</sub>tea) and azide ligands in different solvents: EtOH for the smaller {Fe<sub>4</sub>Ln<sub>2</sub>} wheels and MeOH/MeCN or MeOH/EtOH for the larger {Fe<sub>18</sub>M<sub>6</sub>} wheels. Single-crystal X-ray diffraction analyses revealed that <b>1</b>–<b>3</b> consist of planar centrosymmetric hexanuclear clusters built from Fe<sup>III</sup> and Ln<sup>III</sup> ions linked by an array of bridging carboxylate, azide, and aminopolyalcoholato-based ligands into a cyclic structure with a cavity, and with distinct sets of crystal solvents (2 EtOH per formula unit in <b>1a</b>–<b>c</b>, 2 CH<sub>2</sub>Cl<sub>2</sub> in <b>2</b>, and 2 EtOH and 2 CH<sub>2</sub>Cl<sub>2</sub> in <b>3</b>). In <b>4</b>–<b>10</b>, the largest 3d/4f wheels currently known, nearly linear Fe<sub>3</sub> fragments are joined via mononuclear Ln/Y units by a set of isobutyrates and amino alcohol ligands into virtually planar rings. The magnetic properties of <b>1</b>–<b>10</b> reveal slow magnetization relaxation for {Fe<sub>4</sub>Tb<sub>2</sub>} (<b>1d</b>) and slow relaxation for {Fe<sub>4</sub>Ho<sub>2</sub>} (<b>1c</b>), {Fe<sub>18</sub>Dy<sub>6</sub>} (<b>4</b>), and {Fe<sub>18</sub>Tb<sub>6</sub>} (<b>6</b>)

    A {Co<sup>III</sup><sub>2</sub>Dy<sup>III</sup><sub>4</sub>} Single-Molecule Magnet with an Expanded Core Structure

    No full text
    The coordination cluster compound [CoIII2DyIII4(OH)2­(ib)8(bdea)2(NO3)4­(H2O)2]·2MeCN (1) self-assembles in a high-yield reaction of cobalt(II) isobutyrate (ib) with Dy(NO3)3·6H2O and N-butyldiethanolamine (H2bdea) in air. The Ci-symmetric {CoIII2DyIII4} core fragment features two {CoDy2(μ3-OH)} triangles, joined by one of their Dy sites via μ-O and μ-carboxylate bridges. This results in a flat zigzag metal skeleton, in contrast to previously reported hexanuclear {Co2Ln4(μ3-OH)2} clusters, namely, exhibiting a more condensed combination of two {CoLn2(μ3-OH)} triangles that form a Dy4 rhombus. According to ac susceptibility measurements, this rearrangement in 1 reduces quantum tunneling of the magnetization and hence pushes up the onset of pronounced out-of-phase signals at zero bias field to 14 K, a significant change vs the more condensed {Co2Dy4} structures. As intermolecular interactions between coordination clusters in the solid state are well-known to also influence SMM features, comparative Hirshfeld surface analyses are also presented

    Assembly of Cerium(III) 2,2′-Bipyridine-5,5′-dicarboxylate-based Metal–Organic Frameworks by Solvent Tuning

    No full text
    Small changes to the reaction conditions differentiate between two metal–organic frameworks (MOFs), {[Ce<sub>2</sub>(H<sub>2</sub>O)­(bpdc)<sub>3</sub>(dmf)<sub>2</sub>]·2­(dmf)}<sub><i>n</i></sub> (<b>1</b>) and {[Ce<sub>4</sub>(H<sub>2</sub>O)<sub>5</sub>(bpdc)<sub>6</sub>(dmf)]·<i>x</i>(dmf)}<sub><i>n</i></sub> (<b>2</b>), that were solvothermally synthesized from cerium­(III) nitrate hexahydrate and 2,2′-bipyridine-5,5′-dicarboxylic acid (H<sub>2</sub>bpdc) in dimethylformamide (dmf). The two compounds illustrate how the flexibility of the coordination geometry of Ce<sup>III</sup> translates into MOFs, the formation of which readily adapts to different solvent environments

    Avoiding Magnetochemical Overparametrization, Exemplified by One-Dimensional Chains of Hexanuclear Iron(III) Pivalate Clusters

    No full text
    One-dimensional chain coordination polymers based on hexanuclear iron­(III) pivalate building blocks and 1,4-dioxane (diox) or 4,4′-bipyridine (4,4′-bpy) bridging ligands, [Fe<sub>6</sub>O<sub>2</sub>(O<sub>2</sub>CH<sub>2</sub>)­(O<sub>2</sub>CCMe<sub>3</sub>)<sub>12</sub>(diox)]<sub><i>n</i></sub> (<b>1</b>) and [Fe<sub>6</sub>O<sub>2</sub>(O<sub>2</sub>CH<sub>2</sub>)­(O<sub>2</sub>CCMe<sub>3</sub>)<sub>12</sub>(4,4′-bpy)]<sub><i>n</i></sub> (<b>2</b>), showcase the utility of the angular overlap model, implemented in the program <i>wxJFinder</i>, in the predictive identification of the relative role of intra- and intercluster coupling

    Linear, Zigzag, and Helical Cerium(III) Coordination Polymers

    No full text
    Five novel one-dimensional cerium­(III) carboxylate coordination polymers, [Ce­(O<sub>2</sub>CCH<sub>2</sub>CHMe<sub>2</sub>)<sub>3</sub>(EtOH)<sub>2</sub>]<sub><i>n</i></sub> (<b>1</b>), {[Ce­(O<sub>2</sub>CCH<sub>2</sub>Me)<sub>3</sub>(H<sub>2</sub>O)]·0.5­(4,4′-bpy)}<sub><i>n</i></sub> (<b>2</b>; 4,4′-bpy = 4,4′-bipyridine), {[Ce<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]}<sub><i>n</i></sub> (<b>3</b>), {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(<i>n</i>PrOH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>4</b>), and {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(HO<sub>2</sub>CCHMe<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2Me<sub>2</sub>CHCO<sub>2</sub>H}<sub><i>n</i></sub> (<b>5</b>), showcase the surprisingly consistent tendency of Ce­(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling

    Linear, Zigzag, and Helical Cerium(III) Coordination Polymers

    No full text
    Five novel one-dimensional cerium­(III) carboxylate coordination polymers, [Ce­(O<sub>2</sub>CCH<sub>2</sub>CHMe<sub>2</sub>)<sub>3</sub>(EtOH)<sub>2</sub>]<sub><i>n</i></sub> (<b>1</b>), {[Ce­(O<sub>2</sub>CCH<sub>2</sub>Me)<sub>3</sub>(H<sub>2</sub>O)]·0.5­(4,4′-bpy)}<sub><i>n</i></sub> (<b>2</b>; 4,4′-bpy = 4,4′-bipyridine), {[Ce<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]}<sub><i>n</i></sub> (<b>3</b>), {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(<i>n</i>PrOH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>4</b>), and {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(HO<sub>2</sub>CCHMe<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2Me<sub>2</sub>CHCO<sub>2</sub>H}<sub><i>n</i></sub> (<b>5</b>), showcase the surprisingly consistent tendency of Ce­(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling

    Linear, Zigzag, and Helical Cerium(III) Coordination Polymers

    No full text
    Five novel one-dimensional cerium­(III) carboxylate coordination polymers, [Ce­(O<sub>2</sub>CCH<sub>2</sub>CHMe<sub>2</sub>)<sub>3</sub>(EtOH)<sub>2</sub>]<sub><i>n</i></sub> (<b>1</b>), {[Ce­(O<sub>2</sub>CCH<sub>2</sub>Me)<sub>3</sub>(H<sub>2</sub>O)]·0.5­(4,4′-bpy)}<sub><i>n</i></sub> (<b>2</b>; 4,4′-bpy = 4,4′-bipyridine), {[Ce<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]}<sub><i>n</i></sub> (<b>3</b>), {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(<i>n</i>PrOH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>4</b>), and {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(HO<sub>2</sub>CCHMe<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2Me<sub>2</sub>CHCO<sub>2</sub>H}<sub><i>n</i></sub> (<b>5</b>), showcase the surprisingly consistent tendency of Ce­(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling

    Linear, Zigzag, and Helical Cerium(III) Coordination Polymers

    No full text
    Five novel one-dimensional cerium­(III) carboxylate coordination polymers, [Ce­(O<sub>2</sub>CCH<sub>2</sub>CHMe<sub>2</sub>)<sub>3</sub>(EtOH)<sub>2</sub>]<sub><i>n</i></sub> (<b>1</b>), {[Ce­(O<sub>2</sub>CCH<sub>2</sub>Me)<sub>3</sub>(H<sub>2</sub>O)]·0.5­(4,4′-bpy)}<sub><i>n</i></sub> (<b>2</b>; 4,4′-bpy = 4,4′-bipyridine), {[Ce<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]}<sub><i>n</i></sub> (<b>3</b>), {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(<i>n</i>PrOH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>4</b>), and {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(HO<sub>2</sub>CCHMe<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2Me<sub>2</sub>CHCO<sub>2</sub>H}<sub><i>n</i></sub> (<b>5</b>), showcase the surprisingly consistent tendency of Ce­(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling

    Linear, Zigzag, and Helical Cerium(III) Coordination Polymers

    No full text
    Five novel one-dimensional cerium­(III) carboxylate coordination polymers, [Ce­(O<sub>2</sub>CCH<sub>2</sub>CHMe<sub>2</sub>)<sub>3</sub>(EtOH)<sub>2</sub>]<sub><i>n</i></sub> (<b>1</b>), {[Ce­(O<sub>2</sub>CCH<sub>2</sub>Me)<sub>3</sub>(H<sub>2</sub>O)]·0.5­(4,4′-bpy)}<sub><i>n</i></sub> (<b>2</b>; 4,4′-bpy = 4,4′-bipyridine), {[Ce<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]}<sub><i>n</i></sub> (<b>3</b>), {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(<i>n</i>PrOH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>4</b>), and {[Ce<sub>3</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>9</sub>(HO<sub>2</sub>CCHMe<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2Me<sub>2</sub>CHCO<sub>2</sub>H}<sub><i>n</i></sub> (<b>5</b>), showcase the surprisingly consistent tendency of Ce­(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling
    corecore