36 research outputs found

    Surfactant Protein A Forms Extensive Lattice-Like Structures on 1,2-Dipalmitoylphosphatidylcholine/Rough-Lipopolysaccharide- Mixed Monolayers

    Get PDF
    Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca2+-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS

    Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis

    No full text
    Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today’s society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs—Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD

    Surprising Structural and Functional Properties of Favism Erythrocytes Are Linked to Special Metabolic Regulation: A Cell Aging Study

    No full text
    Favism uniquely arises from a genetic defect of the Glucose-6 Phosphate Dehydrogenase (G6PD) enzyme and results in a severe reduction of erythrocytes’ (RBCs) reducing power that impairs the cells’ ability to respond to oxidative stresses. After exposure to fava beans or a few other drugs, the patients experience acute hemolytic anemia due to RBCs’ lysis both intra and extra-vascularly. In the present paper, we compared selected biochemical, biophysical, and ultra-morphological properties of normal RBCs and cells from favism patients measured along cellular aging. Along the aging path, the cells’ characteristics change, and their structural and functional properties degrade for both samples, but with different patterns and effectors that have been characterized in biophysical and biochemical terms. In particular, the analysis revealed distinct metabolic regulation in G6DP-deficient cells that determines important peculiarities in the cell properties during aging. Remarkably, the initial higher fragility and occurrence of structural/morphological alterations of favism cells develop, with longer aging times, into a stronger resistance to external stresses and higher general resilience. This surprisingly higher endurance against cell aging has been related to a special mechanism of metabolic regulation that permits lower energy consumption in environmental stress conditions. Our results provided a direct and coherent link between the RBCs’ metabolic regulation and the cell properties that would not have been possible to establish without an investigation performed during aging. The consequences of this new knowledge, in particular, can be discussed in a more general context, such as understanding the role of the present findings in determining the characteristics of the favism pathology as a whole

    Thermal Stability and DPPC/Ca 2+

    No full text

    Blood Plasma Thermograms Dataset Analysisby Means of InterCriteria and Correlation Analyses for the Case of Colorectal Cancer

    No full text
    The approaches of InterCriteria Analysis and Correlation Analysis are applied to a dataset of calorimetric and statistical parameters obtained from blood plasma proteome thermograms of colorectal cancer patients. The analysis was performed for four individual predefined subsets of calorimetric profiles. Specific interrelations between the studied criteria were identified that were found to differ among the different calorimetric subsets. For three of the subsets the enthalpy of the thermal profiles was in strong consonance with the excess heat capacity of the immunoglobulins assigned thermal transition. For the calorimetric subsets that differed most from the control healthy set a strong interrelation between the excess heat capacities of the main plasma proteins (albumin and immunoglobulins) was additionally evident. Our results demonstrate that these mathematical approaches can complement the analysis of calorimetric datasets generated for a variety of diseases

    Structural integrity of Synechocystis sp. PCC 6803 phycobilisomes evaluated by means of differential scanning calorimetry

    No full text
    Phycobilisomes (PBSs) are supramolecular pigment-protein complexes that serve as light-harvesting antennae in cyanobacteria. They are built up by phycobiliproteins assembled into allophycocyanin core cylinders (ensuring the physical interaction with the photosystems) and phycocyanin rods (protruding from the cores and having light-harvesting function), the whole PBSs structure being maintained by linker proteins. PBSs play major role in light-harvesting optimization in cyanobacteria; therefore, the characterization of their structural integrity in intact cells is of great importance. The present study utilizes differential scanning calorimetry and spectroscopy techniques to explore for the first time, the thermodynamic stability of PBSs in intact Synechocystis sp. PCC 6803 cells and to probe its alteration as a result of mutations or under different growth conditions. As a first step, we characterize the thermodynamic behavior of intact and dismantled PBSs isolated from wild-type cells (having fully assembled PBSs) and from CK mutant cells (that lack phycocyanin rods and contain only allophycocyanin cores), and identified the thermal transitions of phycocyanin and allophycocyanin units in vitro. Next, we demonstrate that in intact cells PBSs exhibit sharp, high amplitude thermal transition at about 63 degrees C that strongly depends on the structural integrity of the PBSs supercomplex. Our findings implicate that calorimetry could offer a valuable approach for the assessment of the influence of variety of factors affecting the stability and structural organization of phycobilisomes in intact cyanobacterial cells

    Thermal stability and binding energetics of thymidylate synthase ThyX

    No full text
    International audienceThe bacterial thymidylate synthase ThyX is a multisubstrate flavoenzyme that takes part in the de novo synthesis of thymidylate in a variety of microorganisms. Herein we study the effect of FAD and dUMP binding on the thermal stability of wild type (WT) ThyX from the mesophilic Paramecium bursaria chlorella virus-1 (PBCV-1) and from the thermophilic bacterium Thermotoga maritima (TmThyX), and from two variants of TmThyX, Y91F and S88W, using differential scanning calorimetry. The energetics underlying these processes was characterized by isothermal titration calorimetry. The PBCV-1 protein is significantly less stable against the thermal challenge than the TmThyX WT. FAD exerted stabilizing effect greater for PBCV-1 than for TmThyX and for both mutants, whereas binding of dUMP to FAD-loaded proteins stabilized further only TmThyX. Different thermodynamic signatures describe the FAD binding to the WT ThyX proteins. While TmThyX binds FAD with a low μM binding affinity in a process characterized by a favorable entropy change, the assembly of PBCV-1 with FAD is governed by a large enthalpy change opposed by an unfavorable entropy change resulting in a relatively strong nM binding. An enthalpy-driven formation of a high affinity ternary ThyX/FAD/dUMP complex was observed only for TmThyX
    corecore